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Abstract Home heating preferences vary dramatically with regional climate. The temperature at which
residents turn on natural gas home heating systems (critical temperature) varies by as much as 25°C from the
northern to southern United States (U.S.). Here we derive temperature dependent CO2 emissions in three U.S.
cities using a dense ground‐based CO2 observation network. A Bayesian inverse modeling methodology is used
to update a 1‐km emission inventory in each of the three cities. This method is able to correctly identify the
critical temperature of home heating even when this information is withheld from the prior inventory, as verified
by natural gas distribution data. Variance in regional heating practices has not been previously demonstrated
with ground‐based networks of CO2 observations. This result provides evidence that a Bayesian inverse
modeling framework is sensitive to emissions of the home heating sector.

Plain Language Summary This work uses measurements of atmospheric CO2 to determine the
temperature at which people turn on their heat in the Bay Area, Los Angeles, and Houston. Previous studies have
used natural gas distribution data to show that this temperature varies with regional climate. This study is the
first to show that a network of CO2 sensors and an atmospheric model can detect this effect.

1. Introduction
Buildings are responsible for 31% of global CO2 emissions (IPCC, 2023a) and building heating accounts for a
large fraction of building emissions. The International Energy Agency found heating‐related CO2 emissions of
5.0 GtCO2 in 2019 (IEA, 2021), 11% of the global total CO2 emissions that year (IPCC, 2023b). In colder regions
of the world, building heating is responsible for an even larger fraction of emissions (IPCC, 2023a).

In the United States (U.S.), 64% of heated households are heated using combustible fuel, primarily natural gas
(EIA, 2017). Addressing the emissions from space heating of buildings is important for achieving climate goals,
both because of CO2 emitted during combustion and the large contribution of gas infrastructure pipeline leaks to
global methane emissions (Brandt et al., 2014). Replacing natural gas heating systems with electric heat pumps
has the potential to save significant CO2 emissions, with savings dependent on the fuel‐mix of the electricity grid
and the efficiency of the gas appliance being replaced (Walker et al., 2022). The transition to heat pumps has been
relatively slow in the U.S., with 0.2% of households claiming a tax credit for heat pump adoption in 2023
(IRS, 2023).

Natural gas usage varies by household due to behavioral factors and home characteristics (Verhallen &
Raaij, 1981). Household natural gas demand is also affected by energy prices and household income (Alberini
et al., 2011). Mittakola et al. show that household gas demand is flat with respect to temperature above a certain
critical temperature (Tcrit). Below Tcrit, it is cold enough that home heating systems are powered on, and gas
demand shows a linear increase with decreasing temperature. Using natural gas distribution data from 1000 U.S.
counties, the authors find a median Tcrit of 16.5°C with tremendous regional variation. In some counties in the
northern U.S., Tcrit is as low as 0°C, while in certain southern U.S. counties Tcrit exceeds 25°C.

Both activity‐based and atmospheric‐based methods have been used to quantify heating CO2 emissions at sub‐city
scales. Fuel consumption data sets provide a strong activity‐based constraint on regional home heating behavior
(Mittakola et al., 2024) and approximately 100% of home heating fuel combusted is fully oxidized to CO2

(IPCC, 2006). However, developing fine‐scale inventories (i.e., 1 km, hourly) from fuel consumption statistics
can be challenging due to the lack of public fuel consumption data sets at sufficiently fine spatial and temporal
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scales. Atmospheric‐based Bayesian inversion methods can provide additional constraints on activity‐based in-
ventories, but most atmospheric‐based strategies rely on post‐processing steps (often including additional data
sets) to separate the contribution of heating emissions from other sectors (Asimow et al., 2024; Lian et al., 2023;
Turner et al., 2020). Further, atmospheric‐based methods are subject to additional uncertainties resulting from
measurement uncertainty, transport model error, representation error, error in the background concentration, and
uncertainty in biospheric fluxes (Feng et al., 2019; Lian et al., 2023; Martin et al., 2019; Munassar et al., 2023).
Given the strong activity‐based constraints on differing regional home heating behavior, withholding this in-
formation from a prior inventory and solving for emissions provides a valuable sensitivity test of the Bayesian
inversion system. Is the inversion system sufficiently sensitive to regional home heating emissions to differentiate
the temperature at which home heating systems are powered on in different cities?

Previously, our group demonstrated the use of a ground‐based sensor network, the Berkeley Environmental Air
Quality and CO2 Network (BEACO2N), for constraining emissions at sub‐city scales within the San Francisco
(SF) Bay Area, California (Asimow et al., 2024; Turner et al., 2020). The network measures CO2, CO, NO, NO2,
O3, and aerosol particles in the SF Bay Area with approximately 2‐km spacing and has been deployed since 2018
in the present configuration (Delaria et al., 2021; Shusterman et al., 2016; Winter et al., 2025). With collaborators,
similar ongoing BEACO2N networks have been deployed in Glasgow, Scotland (deployed 2020, part of The
Glasgow Environmental Monitoring of Indoor and Outdoor Air project), Los Angeles, California (deployed 2021,
also called Carbon Census), and Providence, Rhode Island (deployed 2022, also called Breathe Providence)
(Breathe Providence, n.d.; GEMINOA, n.d.; Kim et al., 2025). Temporary deployments also occurred in New
York City, New York (2018–2019), and Houston, Texas (2018–2021).

Here, an inversion methodology developed for the SF Bay Area is applied to two additional U.S. cities. The three
cities have distinct climates (Palecki et al., 2020). San Francisco has a mild climate year‐round (winter minimum
8.1°C, summer maximum 21.2°C), Los Angeles has mild winters and warmer summers (9.0°, 28.9°C), and
Houston has mild winters with the hottest summers (6.5°, 34.9°C). While the three cities share similar emission
sectors with traffic as the largest source, residential emissions dominate more in the Bay Area, industrial
emissions are prominent in Los Angeles, and electricity production contributes more in Houston (Figure S5 in
Supporting Information S1).

We conduct 1 year of inversions in both Los Angeles and Houston and 4.5 years of inversions in the SF Bay Area.
In each city, any information regarding temperature dependence of emissions is withheld from the prior in-
ventory. A comparison of the posterior emissions of the three urban regions yields differences in the temperature
dependence of emissions in agreement with known natural gas distribution data. This result demonstrates the
inversion system's ability to detect temperature‐dependent patterns in urban CO2 emissions that are consistent
with expected regional home heating behaviors, suggesting this approach can help distinguish the seasonal
contribution of home heating to overall urban emissions.

2. Methods
We conducted inversions in three urban regions of the U.S. Results for the SF Bay Area have been previously
published (Asimow et al., 2024). In this work, we extend the inversion methodology from the SF Bay Area to Los
Angeles and Houston and analyze the temperature dependence of the emissions in these three urban areas.

2.1. Observing System

Ambient CO2 was measured every 4 s using the Vaisala CARBOCAP Carbon Dioxide Probe GMP343 in the
three urban regions of the study: regions of the SF Bay Area, Los Angeles, and Houston. The data were averaged
to hourly resolution for this analysis. Figure 1 shows measurement site locations. During the study period, 59
sensors were active in the Bay Area, 16 sensors were active in Houston, and 11 sensors were active in Los
Angeles. Details on the instrument and network design are available in previous publications (Delaria et al., 2021;
Shusterman et al., 2016). Network spacing is similar in the Bay Area and Houston and sparser in Los Angeles. The
mean distance from each sensor node to its nearest node was 1.7 km (σ = 0.6 km) in the Bay Area, 2.5 km
(σ = 0.9 km) in Los Angeles, and 1.8 km (σ = 0.7 km) in Houston.
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2.2. Prior Anthropogenic CO2 Emission Inventories

The Bay Area prior used was developed by our group and is a 1‐km, hourly inventory. This inventory includes
vehicle emissions (from the National Oceanic and Atmospheric Administration Fuel‐based Inventory of Vehicle
Emission), and large point source emissions and county‐level natural gas emissions reported by the Bay Area Air
Quality Management District (Mangat et al., 2010; McDonald et al., 2014; Turner et al., 2016, 2020). This in-
ventory has diurnal and day‐of‐week variation, but no seasonal variation.

The Vulcan Version 3.0 inventory from the most recently available model year (2015) was used for both Los
Angeles and Houston (Gurney et al., 2020). Unlike the Bay Area inventory, Vulcan includes seasonal heating
variation. In order to withhold prior information on home heating behavior for the analysis, we utilize seasonally
averaged Vulcan emissions in our priors. Seasonally averaged emissions in each grid cell are calculated by taking
the temporal mean for each hour of the week across 1 year of Vulcan data. The resulting gridded anthropogenic
emissions used in the prior have diurnal and day‐of‐week variation, but no seasonal variation.

2.3. Biospheric Emissions

To create a 1‐kmandhourly estimate of biospheric fluxes,we use a gross primary productivity (GPP) product that is
based on measurements of solar‐induced chlorophyll fluorescence (SIF) from the TROPOspheric Monitoring
Instrument (TROPOMI) (Turner et al., 2021, 2022). From this daily product for plant uptake of CO2, we assume an
annual GPP to respiration scaling of 0.822 (Baldocchi & Penuelas, 2019), which is shown to be applicable over a
range of ecosystems. GPP is partitioned over the course of the day, scaled according to the cosine of the solar zenith

Figure 1. Map of the Berkeley Environmental Air Quality and CO2 Network sensor coverage during the study period in three
urban regions (b–d) shown as insets on a map of the western United States (a). Background map credits: © Stadia Maps
(stadiamaps.com), © Stamen Design (stamen.com), © OpenMapTiles (openmaptiles.org), © OpenStreetMap
(openstreetmap.org/copyright).
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angle. Respiration is partitioned annually using seasonal temperature and partitioned diurnally following Yang
et al., 2014.

2.4. Inversion System

The Stochastic Time‐Inverted Lagrangian Transport Model (STILT) was used to compute a surface influence for
each hourly BEACO2N observation at each measurement site (Fasoli et al., 2018; Lin et al., 2003). Meteorology
was obtained from NOAA's High Resolution Rapid Refresh (HRRR) product (Benjamin et al., 2016). We invert
for hourly CO2 fluxes at 1‐km following Equation 1:

x̂ = xa + (HB)T (HBHT + R)− 1 (y − Hxa) (1)

where xa is the prior,H is the HRRR‐STILT footprints, B is the prior error covariance matrix,R is the model‐data
mismatch error covariance matrix, y is the BEACO2N measurements, and x̂ is the posterior fluxes at 1‐km x 1‐km
resolution. The inversion methodology is described in detail in Text S1, as well as in previous publications
(Asimow et al., 2024; Turner et al., 2020). The prior error covariance matrix, B, is formulated as a Kronecker
product of a spatial prior error covariance matrix and a temporal prior error covariance matrix (Yadav &
Michalak, 2013). Upwind, or background, CO2 is a major source of uncertainty in inversions. As such, we do not
treat the upwind concentration as a known value, but instead formulate the prior with an estimate of upwind
concentration at the domain edges, which is able to be updated along with the fluxes. The prior upwind con-
centration is taken from OCO‐2 Goddard Earth Observing System (GEOS) L3 assimilated data set at the lowest
model level (Weir et al., 2021). We solve Equation 1 to generate posterior fluxes once for each day in each region
using 96‐hr overlapping windows.

We solve for hourly emissions over 4.5 years in the Bay Area (January 2018–July 2022) and 1 year each in
Houston (March 2020–February 2021) and Los Angeles (July 2021–July 2022). We remove the prior biospheric
fluxes (TROPOMI‐SIF) and crop the fluxes to the 40th percentile contour of surface influence (region of in-
fluence), as described in Asimow et al., 2024. The region of influence determination for each city is shown in
Figure S1 in Supporting Information S1. Per capita emissions within the region of influence are calculated using a
1‐km population density map (Figure S3 in Supporting Information S1) (WorldPop & Bondarenko, 2020).

While the posterior error covariance matrix is often used to characterize the uncertainty in Bayesian inversions,
computation of this matrix was computationally intractable. We instead estimate the uncertainty of the posterior
using the 1σ spread of the posterior estimates over 6 weeks averaging time. Spatial uncertainties are explored
further in Figure S10 in Supporting Information S1. The improved agreement of the simulated concentrations
with the observed CO2 concentrations using the posterior fluxes is shown in Figure S11 in Supporting
Information S1.

2.5. Temperature Dependence Analysis

Historical daily mean temperatures for Oakland, Los Angeles, and Houston were obtained from visualcrossing.
com (Visual Crossing, n.d.). Outlier days >2 standard deviations from the mean (in temperature or emissions) are
discarded for each of the three cities. Daily mean temperatures are split into 30 quantile bins for each city and the
median emission between the hours of 0:00 and 6:00 local time for each city is found for each temperature
quantile bin. Posterior emissions were limited to early morning hours to maximize the signal of the residential
emission sector relative to the other sources. The hours of 0:00–6:00 were chosen based on the mean diurnal
pattern of fractional contributions of the 10 emission sectors in Vulcan within the influence region of each city
(Figure S5 in Supporting Information S1). We plot the median early morning emissions versus temperature
quantile. We define a custom piecewise fitting function (Equation 2) and fit the coefficients of the function using
the LMFIT package to determine Tcrit, m, and b with uncertainties (Newville et al., 2024). Temperature bins
>25°C are excluded from the fitting due to the likelihood of emissions from electricity demand for home cooling
in Houston (discussed in detail in Section 3.2 and shown in Figure S8 in Supporting Information S1). We test the
sensitivity of the derived Tcrit to the 25°C assumption in Figure S12 in Supporting Information S1.
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f(T) = {
b +m (T − Tcrit) if T < Tcrit

b if T ≥ Tcrit
} (2)

3. Results and Discussion
3.1. Posterior Emissions

Prior and posterior anthropogenic emissions for each of the three cities are shown in Figure 2. Posterior emissions
decreased (compared to the prior) in all three cities, with largest changes in Houston. Mean Bay Area emissions
decreased by 15.1%, Los Angeles by 13.3%, and Houston by 25.4% from the prior to the posterior. Decreases in
the SF Bay Area appear most strongly at distinct large point sources, such as the Chevron refinery in Richmond,
California, as well as along highways. In Los Angeles, posterior emissions were most decreased in the downtown
area and showed slight increases in the western area of the region of influence. In Houston, decreases largely
follow the highways. The spatial pattern of the differences shown in Figure 2 largely resembles the magnitude of
the emissions in the prior, since the diagonals of the spatial component of the prior error covariance matrix, B,
incorporate a 50% error on the prior emissions. However, spatial patterns in the difference are also influenced by
the magnitude of the footprints in H and the magnitude of the mismatch between modeled concentrations and
observed concentrations (y‐Hxa). A two‐sided paired t‐test is employed to determine which locations have sta-
tistically significant changes from the mean prior emissions to mean posterior emissions (Figure S10 in Sup-
porting Information S1).

A timeseries of prior and posterior emissions (6‐week rolling means) for each city is given in Figure 3. In Asimow
et al., 2024, we showed that the posterior flux uncertainty over the influence region is decreased by ∼25% when

Figure 2. Spatial patterns of the prior, posterior, and difference in anthropogenic emissions for each of the 3 cities. Note that prior and posterior emissions are shown on a
log scale, while differences are presented on a linear scale. Emissions shown are averaged over all times of day and the entire study period. The black trace represents the
region of influence (40th percentile contour of cumulative footprint influence). Background map credits: © Stadia Maps (stadiamaps.com), © Stamen Design (stamen.
com), © OpenMapTiles (openmaptiles.org), © OpenStreetMap (openstreetmap.org/copyright).
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averaged over 6 weeks. Since each city has a different area within its region of influence with differing fractions
of water area, the total emissions (and the per area emissions) of the three regions are not directly comparable. We
present per capita emissions in Figure 3, with total emissions in Figure S2 in Supporting Information S1 and
population density in Figure S3 in Supporting Information S1. Note that the Los Angeles region within the
observation domain has the largest population at approximately 4.3 million, while the Bay Area and Houston both
have a population of approximately 3 million (3.0 and 3.1 million, respectively).

Both the Bay Area and Los Angeles regions show strong seasonality not present in the prior emissions. Houston
shows a much weaker seasonal cycle. Comparison of the posterior to two independent activity‐based inventories:
the GReenhouse Gas And Air Pollutants Emissions System (GRA2PES) (Lyu et al., 2024) inventory for model
year 2021 and the Carbon Monitor Cities (CMC) (Huo et al., 2022) inventory is shown in Figure S4 in Supporting
Information S1 and summarized in Table S2 in Supporting Information S1. In each case, our posterior shares
seasonality behavior with at least one other inventory.

The Bay Area posterior emissions demonstrate strong agreement with both GRA2PES and CMC, which indicate
Bay Area emissions peak in winter. The Los Angeles posterior initially peaks before CMC's peak, but GRA2PES
peaks concurrently with the posterior in Los Angeles. Additionally, the Los Angeles posterior exhibits a second
peak coinciding with CMC's peak. The one‐σ uncertainty range of the posterior typically encompasses both CMC
and GRA2PES values in Los Angeles. Perfect alignment is not expected given different regional boundaries
(Table S2 in Supporting Information S1).

In Houston, CMC predicts both summer and winter emission peaks, while GRA2PES predicts peak emissions in
summer (Figure S4 in Supporting Information S1). Our posterior result supports the seasonality of the GRA2PES
product, though the magnitude of posterior emissions (approximately 15 mol CO2 h− 1 capita− 1) is substantially
lower than GRA2PES (>25 mol CO2 h− 1 capita− 1) and our Vulcan prior (approximately 20 mol CO2 h− 1 cap-
ita− 1). CMC is also higher than our posterior at approximately 20 mol CO2 h− 1 capita− 1. Notably, the CMC region
for Houston includes a very large power plant (Figure S7 in Supporting Information S1), which is not included in
the regions of the other inventories. COVID‐19 activity changes may affect Houston's 2020 emissions. This effect
would be captured in CMC, but not in GRA2PES (model year 2021). The substantial disagreement between
GRA2PES and Vulcan for Houston highlights significant uncertainty in emissions estimates for this region. Our
posterior provides an additional, observationally constrained estimate, but these results indicate a need for further
study of the emissions in this region.

Figure 3. Timeseries of prior and posterior per capita anthropogenic CO2 emissions for each of the cities studied. Each
timeseries is a rolling 6‐week mean. The shaded region represents the rolling 1σ range on the posterior emissions.
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3.2. Impacts of Home Heating

The temperature dependence of the emissions is explored in Figure 4. Emissions follow the expected shape: flat at
moderate temperatures with a linear increase below a critical temperature. At hot temperatures (particularly in
Houston) we also obtain an increase in emissions, likely due to impacts of home cooling. For this analysis, the
hottest temperatures (>25°C) are not analyzed and are left out of the fitting. We test the sensitivity of the derived
Tcrit to this assumption in Figure S12 in Supporting Information S1. After outlier removal and temperature
binning (Section 2.5), a piecewise linear fitting allows us the determine the critical temperature and heating slope
of each city. The fitting yields a Tcrit of 16.5 ± 0.5°C (R2 = 0.87) in the Bay Area, similar to the national median
value of 16.5°C (Mittakola et al., 2024). In Los Angeles and Houston, we find Tcrit of 18.5 ± 0.8°C (R2 = 0.73)
and 18.8 ± 1.2°C (R2 = 0.64) respectively, slightly warmer than the national median. Having nearly 5 years of
emissions posterior in the Bay Area, as opposed to 1 year in Houston or Los Angeles, gives a substantial decrease
in uncertainty, as seen in the size of the confidence intervals for each temperature bin (Figure 4), the smaller in
uncertainty on the Tcrit value, and the higher R2 value. Still, a remarkably clean relationship is also obvious in just
1 year of Los Angeles inversions. The poorer fitting (and corresponding larger uncertainty) in Houston results
largely from the much smaller number of cold days than in Los Angeles during the study periods. A comparison of
our derived Tcrit values to those in Mittakola et al., 2024 is presented in Table S1 in Supporting Information S1, as
well as the values obtained using solely monthly natural gas distribution data provided by the California gas
utilities.

The slope of the emissions with regard to temperature for T < Tcrit provides an indication of the local carbon
intensity of home heating in each city. We find that this slope is most strongly negative in Los Angeles
(− 0.8 ± 0.1 mol CO2/h/capita/°C), and least strongly negative in Houston (− 0.3 ± 0.1 mol CO2/h/capita/°C).
Bay Area values were in between (− 0.5 ± 0.1 mol CO2/h/capita/°C).

Emissions from electricity production play a larger role in Houston relative to the California cities (Figures S5 and
S7 in Supporting Information S1), an effect which is apparent in both home heating and home cooling. In
Houston, 61% of homes are heated with electricity, compared to 30% in the Bay Area and 32% in Los Angeles
(Figure S6 in Supporting Information S1) (U.S. Census Bureau, 2023). Electric heating's carbon intensity varies
with the local grid's fuel composition and often has lower efficiency than direct gas combustion. However, given
that the BEACO2N observing system is mostly sensitive to local emissions, and not all of the electricity used

Figure 4. Emissions as a function of temperature. Daily mean temperatures and emissions from 0:00–6:00 local time were
taken for each of the three regions, then sorted into 30 equally sized temperature bins. Error bars represent the 95%
confidence interval in the median for each bin. A piecewise linear fitting is shown.
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within the region of influence is generated within the region of influence, we cannot draw conclusions on the
carbon intensity of the heating systems from this analysis alone.

The effect of electricity production on home cooling is also apparent in Houston. Emissions increase dramatically
at the warmest temperatures (Figure 4). Electricity demand in the region shows a similar trend at high temper-
atures to the posterior emissions (Figure S8 in Supporting Information S1). While power demand also shows
some increases at lower temperatures (Figure S8 in Supporting Information S1), the corresponding rise in
emissions is amplified by the contributions of natural gas heating.

In the Bay Area and Los Angeles, monthly posterior emissions have a moderately strong correlation with natural
gas distribution data provided by the gas utility, though overall emissions tend to increase a month or so before
reported natural gas distribution increases (Figure S9 in Supporting Information S1). Seasonality of other
emission sectors as well as any potential biospheric fluxes not captured well by SIF could explain the differences
in seasonality.

4. Conclusions
Home heating emissions are a significant contributor to urban CO2 emissions and are strongly temperature
dependent. Emissions from home heating (and cooling) are expected to change in coming decades due to both
planetary warming and adoption of new heating and cooling technologies, such as electric heat pumps. Dense
sensor networks combined with Bayesian inversions are promising methods for tracking these changes over time.
Here we show that a dense CO2 sensor network and Bayesian inversion system are sensitive to relatively small
differences in regional home heating behavior.

Data Availability Statement
BEACO2N data is available at (BEACO2N, 2025). The STILT model is available at (Fasoli et al., n.d.). Inversion
code is available at (Turner, 2020). OCO‐2 GEOS L3 assimilated data set was received from the NASA Global
Modeling and Assimilation Office (https://gmao.gsfc.nasa.gov/). SIF‐GPP data is available at (Turner
et al., 2022). Weather data is available from visualcrossing.com. The Vulcan v3 product is available from (Gurney
et al., 2020). GRA2PES data is available at (Lyu et al., 2024). CMC data is available at https://cities.carbon-
monitor.org/. PG&E data is available at https://pge‐energydatarequest.com/. SoCalGas data is available at https://
energydatarequest.socalgas.com/. ERCOT data is available from https://www.ercot.com/gridinfo/load/load_hist.
ACS home heating fuel data is available from the U.S. Census Bureau (U.S. Census Bureau, 2023). Population
density is available from (WorldPop & Bondarenko, 2020).
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