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Abstract. The success of future geostationary (GEO) satel-

lite observation missions depends on our ability to design

instruments that address their key scientific objectives. In

this study, an Observation System Simulation Experiment

(OSSE) is performed to quantify the constraints on methane

(CH4) emissions in North America obtained from shortwave

infrared (SWIR), thermal infrared (TIR), and multi-spectral

(SWIR+TIR) measurements in geostationary orbit and from

future SWIR low-Earth orbit (LEO) measurements. An effi-

cient stochastic algorithm is used to compute the information

content of the inverted emissions at high spatial resolution

(0.5◦× 0.7◦) in a variational framework using the GEOS-

Chem chemistry-transport model and its adjoint. Our results

show that at sub-weekly timescales, SWIR measurements in

GEO orbit can constrain about twice as many independent

flux patterns than in LEO orbit, with a degree of freedom for

signal (DOF) for the inversion of 266 and 115, respectively.

Comparisons between TIR GEO and SWIR LEO configu-

rations reveal that poor boundary layer sensitivities for the

TIR measurements cannot be compensated for by the high

spatiotemporal sampling of a GEO orbit. The benefit of a

multi-spectral instrument compared to current SWIR prod-

ucts in a GEO context is shown for sub-weekly timescale

constraints, with an increase in the DOF of about 50 % for

a 3-day inversion. Our results further suggest that both the

SWIR and multi-spectral measurements on GEO orbits could

almost fully resolve CH4 fluxes at a spatial resolution of

at least 100 km× 100 km over source hotspots (emissions

> 4× 105 kg day−1). The sensitivity of the optimized emis-

sion scaling factors to typical errors in boundary and initial

conditions can reach 30 and 50 % for the SWIR GEO or

SWIR LEO configurations, respectively, while it is smaller

than 5 % in the case of a multi-spectral GEO system. Over-

all, our results demonstrate that multi-spectral measurements

from a geostationary satellite platform would address the

need for higher spatiotemporal constraints on CH4 emissions

while greatly mitigating the impact of inherent uncertainties

in source inversion methods on the inferred fluxes.

1 Introduction

Methane (CH4) plays a key role in both atmospheric chem-

istry composition and climate. With a radiative forcing rel-

ative to preindustrial times that is one-third that of carbon

dioxide, CH4 is the second most important greenhouse gas

(Myhre and Shindell, 2013). Furthermore, as a precursor to

tropospheric ozone, CH4 also impacts surface-level air qual-

ity (Fiore et al., 2002; West et al., 2006; West and Fiore,

2005) and crops (e.g., Shindell et al., 2012), and contributes

to ozone radiative forcing (e.g., Fiore et al., 2008). Con-

siderable uncertainty remains in our understanding of CH4

sources (e.g., Dlugokencky et al., 2011; Kirschke et al.,

2013), which include emissions from coal, wetlands, live-

stock, landfills, biomass burning, geologic seepage, and leaks

from the production and distribution of natural gas.

Although there is a growing interest in using CH4 emis-

sion regulations as an efficient lever to simultaneously ad-
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dress current air quality and global warming challenges (e.g.,

West et al., 2012), the lack of confidence in the available

CH4 emission estimates remains a problematic limitation to

the design of efficient environmental policies. Indeed, recent

studies showed discrepancies of up to a factor of 2 between

bottom-up inventories and top-down inversions using atmo-

spheric CH4 concentration observations (Katzenstein et al.,

2003; Kort et al., 2008; Xiao et al., 2008; Karion et al.,

2013; Miller et al., 2013; Wecht et al., 2012, 2014a; Caulton

et al., 2014; Turner et al., 2015). Extrapolation of local emis-

sion characteristics to larger areas and/or the use of proxy

data (e.g., energy consumption, emission ratios applied to

co-emitted species) are the main sources of error in bottom-

up methods. On the other hand, top-down approaches us-

ing space-based measurements of CH4 from low-Earth orbit

(LEO) platforms allow a global spatial coverage within 1 to 6

days but at the same local time. However, as CH4 emissions

can exhibit significant diurnal cycles, e.g., over wetland or

boreal peatland (Morin et al., 2014; Gazovic et al., 2010),

such temporal undersampling may affect our ability to ac-

curately quantify those fluxes. More generally, insufficient

observational coverage and the diffusive nature of transport

considerably reduce our ability to spatially resolve grid-scale

emissions from space.

Geostationary (GEO) remote-sensing measurements

would alleviate the above-mentioned shortcomings by

providing an almost continuous monitoring and complete

spatial coverage of CH4 concentrations within the field

of view. Previous studies have already demonstrated the

potential of column-integrated trace gas measurements from

geostationary satellites to constrain surface fluxes at regional

scale, from single mega-city emissions down to power plant

sources (Polonsky et al., 2014; Rayner et al., 2014). The

GEOstationary Coastal and Air Pollution Events (GEO-

CAPE) mission (Fishman et al., 2012) was recommended

by the National Research Council’s Earth Science Decadal

Survey in order to improve our understanding of both coastal

ecosystems and air quality from regional to continental

scale. Its aim is to enable multiple daily observations

of key atmospheric and oceanic constituents over North

and South America from a GEO platform. For air-quality

applications, such high-spatial and high-temporal-resolution

measurements would enable source estimates of air-quality

pollutants and climate forcers and development of effective

emission-control strategies at an unprecedented level of

confidence. In order to provide more flexibility and to

minimize the cost and risk of the mission, the concept of

a phased implementation that would launch remote-sensing

instruments separately on commercial host spacecrafts has

been adopted. The first phase will consist of the launching

of the Tropospheric Emissions: Monitoring of Pollution

(TEMPO) instrument circa 2019 (Chance et al., 2013),

which will provide GEO hourly measurements of ozone and

precursors as well as aerosols over greater North America

(from Mexico City to the Canadian tar sands, and from the

Atlantic to Pacific oceans). For the second phase, which

aims at completing GEO-CAPE’s mission requirements by

including measurements of important drivers of climate and

air quality such as CH4, CO, and ammonia (Zhu et al., 2015),

a rigorous instrument design study is critical to achieve the

mission’s scientific objectives within its budget constraints.

In this study we perform an Observation System Simu-

lation Experiment (OSSE) in order to characterize the con-

straints on grid-scale CH4 emissions over North America

provided by different potential GEO-CAPE instrument con-

figurations. The simulation consists of a 4D-Var inversion

of CH4 emissions using the GEOS-Chem chemical-transport

model (CTM) over a 0.5◦× 0.7◦ horizontal grid resolution

covering North America. In practice, quantifying the infor-

mation content of such a high-dimensional problem requires

either Monte Carlo simulations or, for linear models, a nu-

merical approximation of the inverse Hessian matrix of the

4D-Var cost function (Tarantola, 2005). Although previous

studies have used Monte Carlo estimates (e.g., Chevallier

et al., 2007; Liu et al., 2014; Cressot et al., 2014), their com-

putational cost can be extremely high. Indeed, many per-

turbed inversions (typically about 50) are needed, each of

them requiring numerous forward and adjoint model integra-

tions (iterations) in case the problem is not well conditioned

(about 50 iterations for our methane inversion). Alternatively,

inverse Hessian approximations based on information from

the minimization itself can be employed, but are usually of

very low rank (e.g., Meirink et al., 2008; Bousserez et al.,

2015). Therefore, most information content analyses in pre-

vious trace-gas Bayesian inversion studies have relied on ex-

plicit calculations of the inverse Hessian matrix, by either

considering a regional domain (e.g., Wecht et al., 2014a) or

performing a prior dimension reduction of the control vector

(e.g., Wecht et al., 2014b; Turner and Jacob, 2015). However,

thus far dimension reduction methods for high-dimensional

problems have relied on suboptimal choices for the reduced

space, which preclude an accurate and objective quantifica-

tion of the spatiotemporal constraints on the optimized emis-

sions.

In this study we use a gradient-based randomization al-

gorithm to approximate the inverse Hessian of the cost func-

tion (Bousserez et al., 2015), which allows us to calculate the

posterior errors as well as the model resolution matrix (or av-

eraging kernel) of our CH4 emission inversion at grid-scale

resolution. Such information is used to evaluate the impact of

different instrumental designs (spatiotemporal sampling, ver-

tical sensitivity of the measurements) on CH4 emission con-

straints. In particular, the potential of CH4 retrievals from the

future TROPOspheric Monitoring Instrument (TROPOMI)

shortwave infrared (SWIR) measurements in a LEO orbit

as well as from a hypothetical multi-spectral instrument in

a geostationary orbit are examined. Section 2 describes the

OSSE framework considered in this study, which comprises

the 4D-Var method, the forward model, as well as the ob-

servations and prior information used. Section 3 presents the
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results of our experiments, where the information content of

the inversion is analyzed in detail. A conclusion to this work

is presented in the last section of the paper.

2 Inverse method

2.1 4D-Var system and information content

The variational approach to Bayesian inference is the method

of choice for high-dimensional problems, since the solution

can be computed by iteratively minimizing a cost function

instead of algebraically solving for the minimum, which be-

comes computationally intractable for high-dimensional sys-

tems. Provided the error statistics are all Gaussian, finding

the maximum likelihood entails solving the following prob-

lem:

argmin
x
J (x) (1)

J (x)=
1

2
(H(x)− y)TR−1(H(x)− y)

+
1

2
(x− xb)

TB−1(x− xb),

where xb is the prior vector, defined in the control space E

of dimension n, x belongs to E, y is the observation vector,

defined in the observations vector space F of dimension p,

H : E→ F is the forward model operator (also called the

observational operator), which associates with any vector in

E its corresponding observation in F , and R and B are the

covariance matrices of the observation and prior errors with

dimension (p×p) and (n×n), respectively. The argument of

the minimum of Eq. (1) is called the analysis and is referred

to as xa.

When the adjoint of the forward model (HT ) is available,

the minimum of the cost function J can be found itera-

tively using a gradient-based minimization algorithm (Lions,

1971). The gradient of the cost function with respect to the

control vector x can be written as

∇J (x)=HTR−1(H(x)− y)+B−1(x− xb). (2)

An important result is that if the forward model is ap-

proximately linear, the posterior error covariance matrix Pa

is equal to the inverse of the Hessian of the cost function:

Pa
= (∇2J )−1(xa)= (B

−1
+HTR−1H)−1. (3)

This equivalence can be used to compute information con-

tent diagnostics prior to performing the inversion. In this

study, following Bousserez et al. (2015), the diagonal ele-

ments of Pa (error variances) are computed using a random-

ization estimate of HTR−1H. Here an ensemble of 500 ran-

dom gradients of the cost function are used, based on the con-

vergence of the uniform norm (‖.‖∞) of the inverse Hessian

approximation. Bousserez et al. (2015) showed that good ap-

proximation of both the error variances and the error corre-

lations can be obtained using this approach. For the present

study we further validated our method by comparing direct

finite-difference estimates of selected diagonal elements of

Pa to their stochastic approximations, and found a relative

error standard deviation smaller than 10 %.

The model resolution matrix (or averaging kernel A) is

defined as the sensitivity of the analysis xa (optimized CH4

emissions) to the truth xt (true emissions):

A≡
∂xa

∂xt

. (4)

The model resolution matrix in Eq. (4) can be rewritten in

matrix form:

A= I−PaB−1. (5)

Since B is diagonal in our experiments, Eq. (5) allows us to

calculate any element of A using

Ai,j = δij −
Pa
i,j

Bj,j
. (6)

Finally, the degree of freedom for signal (DOF) of the inver-

sion is defined as the trace of A, that is, DOF=
∑
iAi,i .

2.2 Forward model and prior emissions

The forward model in Eq. (1) includes the GEOS-Chem

chemistry-transport model, which relates the CH4 emissions

to the 3-D concentration field of atmospheric CH4, and the

satellite observation operator that transforms the CH4 con-

centration profiles into their corresponding retrieved profile

or columns. The GEOS-Chem simulation used in our exper-

iment is described in Wecht et al. (2014a) and Turner et al.

(2015). It consists of a nested simulation over North Amer-

ica at 0.5◦×0.7◦ horizontal resolution and 72 vertical levels,

driven by offline meteorological data provided by GEOS-5

reanalysis from the NASA Global Modeling and Assimila-

tion Office (GMAO). Boundary conditions for the nested do-

main are used every 3 h from a global 4◦× 5◦ GEOS-Chem

simulation. In the case of profile assimilation (multi-spectral

instrument), the application of the measurement averaging

kernels to the model profiles can be written as follows:

lnzretr = lnza+A(lnzmod− lnza), (7)

where zretr is the profile that would be retrieved if the mod-

eled profile concentrations (zmod) were sounded, and za rep-

resents the prior profile concentrations. In the case of XCH4

columns assimilation, we obtain (Parker et al., 2011)

XCH4
=
XCO2

�CO2

(�a+ aT (ωmod−ωa)), (8)

where ωmod is the modeled vertical profile of methane, ωa is

the a priori profile, �a is the corresponding a priori column

concentration of methane, a is a column averaging kernel

vector that describes the sensitivity as a function of altitude,
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�CO2
is the measured vertical column concentration of CO2,

andXCO2
is a modeled column mixing ratio of CO2. For sim-

plicity, we use a single averaging kernel for each instrument.

A larger ensemble of averaging kernels describing a poten-

tial range of sensitivities is beyond the scope of this study

given the computational cost. However, based on knowledge

of thermal IR (e.g., TES) and total column (e.g., TROPOMI)

retrievals, use of a single averaging kernel is a reasonable

approximation as our study is constrained to Northern Hemi-

sphere summertime where the temperature and sunlight con-

ditions provide a sufficient signal for the present evaluation,

and because our study looks at the relative merits of different

observing approaches.

The prior methane emissions we use are from the

EDGARv4.2 anthropogenic methane inventory (European

Commission, 2011), the wetland model from Kaplan (2002)

as implemented by Pickett-Heaps et al. (2011), the GFED3

biomass burning inventory (van der Werf et al., 2010), a ter-

mite inventory and soil absorption from Fung et al. (1991),

and a biofuel inventory from Yevich and Logan (2003). Fig-

ure 1 shows the total average daily prior methane emissions

for the entire North America nested domain. Strong hotspots

of CH4 sources clearly appear over the Canadian wetlands,

the Appalachian Mountains (an extensive coal mining area)

and densely urbanized areas (e.g., southern California and

the eastern coast). Following previous assessments of the

range of the prior error (Wecht et al., 2014a; Turner et al.,

2015), we assume a relative prior standard error of 40 % for

our bottom-up emission inventory in every grid cell. This re-

sults in a 2.9 Tg month−1 uncertainty in the total emission

budget over North America, a magnitude comparable to the

correction to the prior budget found in the inversion of Turner

et al. (2015) of 2.3 Tg month−1. We assume no prior spatial

error correlations, which means that the matrix B in Eq. (1)

is diagonal. Accurately defining error correlations in bottom-

up inventories is a challenging problem due to the sparsity of

available flux measurements, and is beyond the scope of our

study. However, it is likely that the diagonal B assumption

made in our study is overly optimistic, which may result in

an overestimation of the spatial resolution of the constraints

afforded by the satellite measurements. Note that in our setup

one emission scaling factor is optimized per grid cell; there-

fore, the temporal variability of the emissions is assumed to

be a hard constraint at scales smaller than the assimilation

window.

2.3 Observations and model uncertainties

We consider several instrument configurations for our study,

which are associated with different vertical sensitivities: the

future TROPOMI instrument (2016 launch), which will mea-

sure in the shortwave infrared (SWIR); the Tropospheric

Emission Spectrometer (TES) V005 Lite product (Worden

et al., 2012) (http://tes.jpl.nasa.gov/data/), which consists of

CH4 vertical profile retrievals from thermal infrared (TIR)

Figure 1. Total daily average prior methane emissions for the nested

North America domain (0.5◦× 0.7◦).

measurements at 7.58–8.55 µm; and a hypothetical multi-

spectral CH4 profile retrieval, which allows us to capture a

signal in the boundary layer. Since the DOF for the TES re-

trievals is less than 2, we use a pressure-weighted TES XCH4

column instead of the retrieved CH4 profiles. The averag-

ing kernel for the TROPOMI configuration is taken from

the Greenhouse gases Observing SATellite (GOSAT) Proxy

XCH4 v3.2 retrieval described by Parker et al. (2011) (avail-

able from http://www.leos.le.ac.uk/GHG/data/), which con-

sists of CH4 column mixing ratios (XCH4
) obtained from

SWIR measurements near 1.6 µm. As noted in Wecht et al.

(2014b), the difference between the TROPOMI and GOSAT

retrievals are of little consequence, as the averaging kernel

for SWIR observations is near unity in the troposphere in

any case. The multi-spectral averaging kernel is derived by

first combining the Jacobians (or sensitivities) of the mod-

eled radiances to methane concentrations from the 1.6 and

8 µm bands. Both the TES and GOSAT retrievals also si-

multaneously estimate interferences such as clouds, albedo,

emissivity, temperature, and H2O. The effects of these in-

terferences can be included by further combining their cor-

responding Jacobians with the methane Jacobians (e.g., Wor-

den et al., 2004; Kulawik et al., 2006; Butz et al., 2010). Con-

straints for methane and the other radiative interferences are

described in Worden et al. (2012) and Parker et al. (2011).

The combination of these Jacobians and constraints are then

used to calculate the averaging kernel. The methane compo-

nent of the resulting multi-spectral, multi-species averaging

kernel is then used for this study. The effect of the interfer-

ences with this simultaneous retrieval approach is to reduce

the overall sensitivity to methane but improve the posteriori

errors. A proof of concept for combining near-IR and IR-

based methane estimates to derive a lower tropospheric esti-

mate is discussed in Worden et al. (2015) using GOSAT and

TES profile retrievals.

Figure 2 shows the column averaging kernel for the

TROPOMI and TES XCH4
retrievals as well as the aver-

aging kernels at three different levels for the multi-spectral

Atmos. Chem. Phys., 16, 6175–6190, 2016 www.atmos-chem-phys.net/16/6175/2016/
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Figure 2. Averaging kernels for the different instrument configu-

rations: (a) TROPOMI column averaging kernel; (b) TES column

averaging kernel; (c) multi-spectral averaging kernels at three pres-

sure levels: 908, 562 and 383 hPa.

retrieval. The TROPOMI retrieval sensitivity is nearly uni-

form throughout the troposphere, with averaging kernel val-

ues close to 1. The TES retrieval is mostly sensitive to CH4

concentrations in the upper troposphere, with a peak of the

column averaging kernel around 300 hPa. The multi-spectral

profile retrieval shows a distinct signal in the boundary layer,

with weaker sensitivities above.

Observation and model transport errors are assumed to

be independent and therefore added in quadrature to define

the error covariance matrix R in Eq. (1). Observational error

standard deviations for TROPOMI XCH4
columns are uni-

formly set to 12 ppb, within the range of values reported for

GOSAT in Parker et al. (2011). For the TES retrievals, the

profile error covariance matrix is averaged vertically using

pressure-weighted functions to obtain XCH4
column errors,

as described in Connor et al. (2008). This results in a 0.5–2 %

(or 10–40 ppb) standard error deviation for the TES columns

(Worden et al., 2012). For the multi-spectral retrievals, a ver-

tically resolved error covariance matrix is used. The error

covariance for the multi-spectral retrieval is derived along

with the averaging kernel using the approach described in

Fu et al. (2013) and references therein. The Jacobians for

CH4 and other trace gases affecting the observed radiances,

from the near-IR and thermal IR, are combined along with

noise estimates for both spectral regions that are based on

TES and GOSAT radiances. Because we assume that inter-

ferences such as albedo, emissivity, and H2O are jointly es-

timated, the uncertainties from these interferences are also

included in the resulting observation error matrix. The re-

sulting pressure-weighted column XCH4
error standard de-

viation is similar to the one obtained for GOSAT retrievals

(∼ 12 ppb).

As shown by Locatelli et al. (2013), taking into account

transport errors is critical in order to mitigate uncertainties in

the inversion, since neglecting them can lead to discrepancies

in the posterior estimates of more than 150 % of the prior flux

at model grid scale. We estimate model transport error using

model–data comparison statistics for North American in situ

observations from the NOAA/ESRL surface, tower, and flask

network as well as observations from the HIPPO and Cal-

Nex measurement campaigns (Turner et al., 2015). Model

error standard deviations are set to 46 ppb in the boundary

layer and 22 ppb in the free troposphere. Vertical error cor-

relations between simulated concentrations are difficult to

quantify with the limited observational sampling available

in situ. Transport error correlations between the boundary

layer and the free troposphere are assumed to be negligi-

ble due to the decoupling of the physical processes between

those two regions. However, within both the boundary layer

and the free troposphere, a model error correlation of one

is assumed between all altitude levels, which is a conserva-

tive (pessimistic) assumption. Our gradient-based estimates

of the inverse Hessian matrix involve generating random per-

turbations that follow the observational error statistics (see

Sect. 2.1). For the multi-spectral configuration, a singular

value decomposition (SVD) is first performed on the verti-

cally resolved matrix R in order to generate independent per-

turbations (e.g., Bousserez et al., 2015).

In order to assess the relative impact of measurement sen-

sitivity versus spatiotemporal sampling on the CH4 emis-

sion constraints, both LEO and GEO orbit configurations are

considered in our study. The LEO orbit configuration ap-

proximately follows TROPOMI’s sun-synchronous polar or-

bit with an Equator overpass local time of 14:00 and daily

global coverage with a footprint area of ∼ 7× 7 km2. The

GEO configuration corresponds to hourly observations over

North America from 10 to 60◦ N. The GEO footprint consid-

ered is ∼ 4 km, i.e., much finer than the GEOS-Chem res-

olution used (∼ 50 km). For both LEO and GEO configu-

rations, observations are therefore averaged together within

each GEOS-Chem grid cell and the instrument error standard

www.atmos-chem-phys.net/16/6175/2016/ Atmos. Chem. Phys., 16, 6175–6190, 2016



6180 N. Bousserez et al.: Constraints on methane emissions from geostationary observations

Figure 3. Density of satellite observations (grid cell−1 week−1) for LEO (left) and GEO (right) orbits for the nested North America domain

(0.5◦× 0.7◦) and for the period 1–8 July 2008.

deviation is reduced by multiplying it by the square root of

the number of observations.

Finally, contamination by clouds is taken into account for

each grid cell by removing a fraction of the total number of

observations within that cell that corresponds to the GEOS-5

cloud fraction. The resulting spatial distribution of the obser-

vational data density for each satellite configuration (LEO or

GEO) is shown in Fig. 3.

3 Results

In the following experiments, we consider the inversion of

30-, 7-, and 3-day grid-scale emission scaling factors over

North America. In particular, this means that the spatiotem-

poral variability of the methane fluxes (e.g., diurnal cycle and

spatial distribution) within each time window is assumed to

be known, and only its magnitude is adjusted. The informa-

tion content of the inversion is analyzed for four different

observational systems:

– a TROPOMI instrument onboard a low-Earth orbit plat-

form (TROPOMI_LEO);

– a TROPOMI instrument onboard a geostationary orbit

platform (TROPOMI_GEO);

– a TES-like instrument onboard a geostationary orbit

platform (TES_GEO);

– a multi-spectral instrument onboard a geostationary or-

bit platform (MULTI_GEO).

3.1 Error reduction of optimized methane emissions

Figures 4, 5, and 6 show the relative error variance reduction

in the emission scaling factors for 30-, 7-, and 3-day inver-

sions, respectively, for each of the observational configura-

tions described above. The DOF, which quantifies the num-

ber of pieces of information independently constrained by

the observations, is also indicated. For the monthly inversion,

the TROPOMI_LEO, TROPOMI_GEO, and MULTI_GEO

configurations show error variance reductions close to 100 %

for sparse hotspots over the continent, in particular in the

Los Angeles basin, the central US, the Toronto urban area,

the Appalachian Mountains, and the northeastern US. The

TES_GEO configuration still shows significant observational

constraints in those locations, with error variance reductions

> 70 %. However, overall the error variance reductions af-

forded by using a TES-like instrument in geostationary orbit

are much smaller than the one obtained from a TROPOMI-

like or multi-spectral instrument. In particular, the DOF for

the TES_GEO configuration (164) is about half that of the

TROPOMI_LEO configuration (298). This demonstrates that

using measurements with significant sensitivities to lower-

tropospheric concentrations is critical to obtaining surface

flux information, even in a geostationary framework with

high-frequency temporal sampling. The advantage of the

GEO over the LEO configuration is more pronounced when

smaller emission timescales are constrained (weekly, 3-day).

In particular, the DOF for TROPOMI_LEO varies from

88 to 43 % of the DOF for TROPOMI_GEO between the

monthly and 3-day inversions. Similarly, but to a lesser ex-

tent, the benefit of a multi-spectral profile observation com-

pared to a TROPOMI-like column measurement is most ev-

ident when the temporal resolution of the flux inversion is

increased, with a DOF ratio between TROPOMI_GEO and

MULTI_GEO varying from 84 to 67 % between the monthly

and 3-day inversions.

These results are synthesized in Fig. 7, which shows the

relative error variance reduction as a function of emission

magnitude, for each observational system and inversion time

window. The convergence of the flux constraints provided

by the TROPOMI (LEO or GEO) and the multi-spectral

GEO instruments is well illustrated by the convergence of

the corresponding curves as the temporal scale of the op-

timization increases from 3 days to 1 month. These results

also show that for grid cells with high CH4 emissions (>
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Figure 4. Relative error variance reduction for a 30-day methane emission optimization (1–30 July 2008) using (a) TROPOMI low-Earth

orbit observations (TROPOMI_LEO); (b) GEO-CAPE observations with a TES-like instrument (TES_GEO); (c) GEO-CAPE observations

with a TROPOMI-like instrument (TROPOMI_GEO); and (d) GEO-CAPE observations with a multi-spectral instrument (MULTI_GEO).

Zero values correspond to emissions with no constraints from observations, while values of one correspond to emissions entirely constrained

by observations. The DOF for each inversion, which is the sum of all diagonal elements of the model resolution matrix, is also indicated.

4× 105 kgday−1 grid−1), a multi-spectral instrument in geo-

stationary orbit would reduce prior flux error variances by

more than 80 % at timescales as small as 3 days. In par-

ticular, this could provide valuable information to monitor

the variation of CH4 emission hotspot activities between

workweek and weekend. Finally, we note that Turner et al.

(2015) obtained a DOF of 39 for a multi-year CH4 flux in-

version over North America using GOSAT LEO observa-

tions. The much higher DOF (298) obtained for our monthly

TROPOMI_LEO inversion clearly demonstrates the impact

of spatial sampling when using a TROPOMI LEO config-

uration, which will provide roughly 2 orders of magnitude

more observations than GOSAT. We also note that in Turner

et al. (2015), a prior dimension reduction of the inverse prob-

lem was performed to enable an analytical computation of

the solution with only 369 control vector elements. Although

it is claimed that the aggregation scheme used to define the

reduced space is designed to account for prior error corre-

lations, the results obtained in Turner et al. (2015) indicate

the reduction method is suboptimal (see the interactive dis-

cussion of Turner et al., 2015, for more details), which could

result in an underestimation of the DOF. On the other hand,

in our case neglecting error correlations in the prior inven-

tory may result in an overestimation of the DOF. In the ab-

sence of a rigorous methodology to accurately estimate the

prior error correlations, the DOFs we derived should there-

fore be interpreted with caution, but can provide useful in-

sights into the relative magnitude of the constraints afforded

by different instruments and orbit configurations. These re-

sults also correspond to the limit to which the observational

constraints would tend as the effective spatial resolutions of

the bottom-up CH4 inventories are increased. In relation to

previous works by Turner et al. (2015) and Bocquet et al.

(2011), it should also be noted that the gradient-based algo-

rithm used in our study allows us to estimate the DOF of the

inversion prior to optimization; this information could there-

fore be used to objectively determine an appropriate dimen-

sion for the inverse problem, upon which specific dimension

reduction methods could be devised.
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Table 1. Coordinates of the five locations considered for the rows of the model resolution matrix, with their corresponding emission rate.

Region Coordinates Emission Emission

(lon, lat (◦)) (105 kgday−1 (gridcell)−1) (105 kgday−1 km−2)

Eastern US (−82, 38) 399 0.12

Central US (−104, 40) 830 0.26

California (−117.3, 34.5) 895 0.26

Western Canadian wetlands (−120, 61.5) 575 0.29

Eastern Canadian wetlands (−84.6, 52.5) 205 0.08

(a) (b)

(c) (d)

DOFs=166 DOFs=68

DOFs=314 DOFs=398

a)

c) d)

DOFs=68

DOFs=314 DOFs=398

b)

c) d)

DOFs=166 DOFs=68

DOFs=314 DOFs=398

a) b)

c) d)

DOFs=68

DOFs=314 DOFs=398

a) b)

c) d)

DOFs=166 DOFs=68

DOFs=314 DOFs=398

TROPOMI	  	  
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TES	  GEO	  

TROPOMI	  	  
GEO	  

MULTI	  GEO	  

Figure 5. Relative error variance reduction for a 7-day methane emission optimization (1–8 July 2008) using (a) TROPOMI low-Earth orbit

observations (TROPOMI_LEO); (b) GEO-CAPE observations with a TES-like instrument (TES_GEO); (c) GEO-CAPE observations with

a TROPOMI-like instrument (TROPOMI_GEO); and (d) GEO-CAPE observations with a multi-spectral instrument (MULTI_GEO). Zero

values correspond to emissions with no constraints from observations, while values of one correspond to emissions entirely constrained by

observations. The DOF for each inversion, which is the sum of all diagonal elements of the model resolution matrix, is also indicated.

3.2 Spatial resolution of the inversion

An objective measure of the spatial resolution of the inver-

sion, i.e., the ability of the observational system to constrain

grid-scale emissions independently of each other, is provided

by the rows of the model resolution matrix (see Eq. 5). Fig-

ure 8 shows the model resolution matrix rows of the weekly

inversion corresponding to five different locations, chosen to

span a range of characteristics, in terms of emissions mag-

nitude and error reduction. For readability, only grid cells

included within the largest circle centered on each location

and containing values greater than 0.05 are shown. Table 1

summarizes the coordinates and CH4 emissions correspond-

ing to each location. Since the model grid-cell area depends

on the latitude, the radiuses of each of the structures shown

in Fig. 8 are also summarized in Table 2. Note that the 3-

day inversion results (not shown) gave similar results to the

1-week inversion. The gain in spatial resolution of the opti-

mized fluxes when a GEO orbit is used is evident when com-

paring the TROPOMI_LEO and TROPOMI_GEO results. In

particular, Table 2 suggests that for the central US and Cal-

ifornia regions, the spatial resolution of the independently
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Figure 6. Relative error variance reduction for a 3-day methane emission optimization (1–3 July 2008) using (a) TROPOMI low-Earth orbit

observations (TROPOMI_LEO); (b) GEO-CAPE observations with a TES-like instrument (TES_GEO); (c) GEO-CAPE observations with

a TROPOMI-like instrument (TROPOMI_GEO); and (d) GEO-CAPE observations with a multi-spectral instrument (MULTI_GEO). Zero

values correspond to emissions with no constraints from observations, while values of one correspond to emissions entirely constrained by

observations. The DOF for each inversion, which is the sum of all diagonal elements of the model resolution matrix, is also indicated.

constrained flux patterns is about 2 times higher in the case

of a GEO configuration (radius∼ 80 km) compared to a LEO

configuration (radius ∼ 160 km). Based on the comparison

between the TROPOMI_GEO and MULTI_GEO configura-

tions, the gain in spatial resolution afforded by the use of

a multi-spectral instrument appears significant (factor of 2)

only over the eastern US region. Note that although the sizes

of the flux structures are similar between the TES_GEO and

TROPOMI_LEO configurations, the average values of the

model resolution matrix row within each structure are sig-

nificantly higher in the case of TROPOMI_LEO.

3.3 Impact of boundary and initial conditions

uncertainties

Boundary and initial conditions used in the forward trans-

port model contain errors. Therefore, any consistent flux in-

version system should jointly optimize the fluxes, initial state

and boundary conditions. However, in practice, many studies

overlook this issue and optimize those quantities separately

(e.g., Basu et al., 2013; Deng et al., 2014). In the latter case,

a flux-only inversion is performed with initial and boundary

conditions that are effectively assumed perfectly known. It is

therefore of interest to estimate the impact of errors in the

initial and boundary conditions on the optimized fluxes. Fig-

ure 9 shows the perturbations in the optimized emission scal-

ing factors for the weekly inversion resulting from random

Gaussian perturbations of the boundary conditions with stan-

dard deviation 16 ppb. The choice for the standard error of

the noise is based on model–data comparisons from the HIA-

PER Pole-to-Pole Observations (HIPPO) experiment (Turner

et al., 2015), which consists in extensive aircraft measure-

ments throughout the troposphere over the Pacific Ocean.

Only weekly inversion results are shown here, so that enough

constraints are obtained for all observational configurations

while keeping the computational cost of the inversions man-

ageable.

For all configurations, the results show scaling factor

perturbations throughout the North America domain, al-

though they are less pronounced over the eastern US due

to the dominant westerly propagation of the boundary con-

dition perturbations into the domain. The TES_GEO and

TROPOMI_GEO configurations show similar sensitivities of
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Table 2. Coordinates of the five locations considered for the rows of the model resolution matrix and approximate radius of influence of

neighboring grid cells (see text), for each satellite configuration and a weekly methane flux inversion.

Region Coordinates TES_GEO TROPOMI_LEO TROPOMI_GEO MULTI_GEO

(lon, lat (◦)) Radius (km) Radius (km) Radius (km) Radius (km)

Eastern US (−82, 38) 160 160 160 80

Central US (−104, 40) 79 158 79 79

California (−117.3, 34.5) 164 164 82 82

Western Canadian wetlands (−120, 61.5) 130 196 131 196

Eastern Canadian wetlands (−84.6, 52.5) 283 213 142 142

TES	  GEO	  

TROPOMI	  LEO	  

TROPOMI	  GEO	  

MULTI	  GEO	  

(a)

(b)

(c)

Figure 7. Relative error variance reduction as a function of methane

emission magnitude for a (a) 30-day (1–30 July 2008), (b) 7-day

(1–8 July 2008), and (c) 3-day (1–4 July 2008) inversion. Blue:

TROPOMI low-Earth orbit observations (TROPOMI_LEO); green:

GEO-CAPE observations with a TES-like instrument (TES_GEO);

red: GEO-CAPE observations with a TROPOMI-like instru-

ment (TROPOMI_GEO); black: GEO-CAPE observations with

a multi-spectral instrument (MULTI_GEO). Results for a 3-day

MULTI_GEO inversion are also shown in purple (top). The verti-

cal bars indicate the standard deviation of observational constraints

within each bin.

the optimized scaling factors to boundary conditions, with

large areas characterized by perturbations between 10 and

50 %, and with impacts greater than 50 % locally. In com-

parison, the TROPOMI_GEO configuration shows smaller

sensitivities to boundary conditions, with perturbations gen-

erally smaller than 30 %. The MULTI_GEO results are in

contrast to the other configurations, with most scaling factor

perturbations being smaller than 5 %.

The differences between the sensitivities of the optimized

fluxes to boundary conditions for different observational sys-

tems are driven by two factors: (1) the sensitivity of the ob-

servations to the underlying fluxes (defined by the opera-

tor H ) and (2) the model–data mismatch (i.e., H(x)− y)).

This can be seen, e.g., by considering the observational

term in the gradient formula of Eq. (2). Formally, a per-

turbation of the boundary conditions will translate into a

corresponding perturbation of the observations (y) in the

model–data mismatch, which is propagated into flux scal-

ing factor perturbations through the adjoint matrix of sen-

sitivities (HT ). The effect of (1) is clearly seen when com-

paring the TROPOMI_GEO and TROPOMI_LEO results,

the higher temporal frequency of the geostationary obser-

vations providing higher sensitivity to the fluxes. The effect

of (2) is best illustrated by comparing the TROPOMI_GEO

and MULTI_GEO results. Indeed, since the multi-spectral

measurements allow for distinguishing boundary layer from

free tropospheric CH4 concentrations, and given the uni-

form (∼ 1) sensitivity of the TROPOMI column measure-

ments throughout the troposphere (see Fig. 2), the boundary

layer model–data mismatch (MULTI_GEO) is much smaller

than the column model–data mismatch (TROPOMI_GEO),

which results in much higher flux adjustments for the

TROPOMI_GEO configuration.

The same analysis applies to the sensitivities of the op-

timized fluxes to initial conditions, which are shown in

Fig. 10. Here the CH4 3-D initial concentrations were per-

turbed with random Gaussian noises of standard deviation

46 and 22 ppb in the boundary layer and the free tropo-

sphere, respectively, based on model–data comparisons with

NOAA flasks, tall tower, and aircraft measurements over

North America (Turner et al., 2015). In the case of initial

conditions, as opposed to boundary conditions, the forcing

perturbations are applied only once at the beginning of the

inversion window, which results in the signal being quickly

diluted and therefore in smaller impacts on the optimized

fluxes. The TROPOMI_GEO configuration, which combines
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Figure 8. Rows of the model resolution matrix (unitless) for five locations for a 7-day inversion (1–8 July 2008), using (a) TROPOMI

low-Earth orbit observations (TROPOMI_LEO); (b) GEO-CAPE observations with a TES-like instrument (TES_GEO); (c) GEO-CAPE

observations with a TROPOMI-like instrument (TROPOMI_GEO); and (d) GEO-CAPE observations with a multi-spectral instrument

(MULTI_GEO). Coordinates of the five locations considered are reported in Table 1 and approximately correspond to the peak value of

each structure on the maps.

significant sensitivities to CH4 concentrations throughout the

troposphere with high-frequency measurements, is most sen-

sitive to initial condition perturbations, with up to 30 % vari-

ability in the optimized scaling factors. The TROPOMI_LEO

and TES_GEO configurations show comparable sensitivities,

with scaling factor perturbations generally smaller than 10 %.

Similarly to the boundary condition case, initial condition

sensitivities associated with the MULTI_GEO configuration

are about 1 order of magnitude smaller than other configu-

rations, with scaling factor perturbations generally smaller

than 3 %. These results show that although the advantage of

a multi-spectral instrument in terms of spatiotemporal con-

straints on the fluxes becomes significant only for timescales

smaller than a week, there is still a clear benefit in using

this configuration to mitigate the impact of uncertainties in

boundary and initial conditions on the inversion, even when

optimizing fluxes at coarser temporal resolution (e.g., weekly

or monthly).

4 Conclusions

In this paper we evaluated top-down constraints on methane

emissions in North America provided by future potential

geostationary (GEO-CAPE) and planned low-Earth orbit

(TROPOMI) remote-sensing observation missions. For the

first time, a grid-scale estimate of the information content of

a high resolution inversion (0.5◦×0.7◦ over North America)

in a 4D-Var inversion framework has been performed using

an efficient stochastic algorithm. In particular, this allowed

us to compute both the relative error reductions and the spa-

tial correlations between observational constraints in the in-

version. Instrument configurations corresponding to TIR and

SWIR methane retrievals (TES-like and TROPOMI, respec-

tively), as well as a potential future multi-spectral retrieval,

were considered. This allowed us to assess the relative im-

portance of the vertical sensitivity of the measurement versus

the spatiotemporal resolution of the sampling (GEO versus

LEO) in methane flux inversions.

We found that a GEO configuration provides significant

benefits over the future TROPOMI LEO products in terms
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Figure 9. Sensitivity of the optimized emission scaling factors to uncertainties in boundary conditions for a 7-day inversion (1–8 July 2008),

using (a) TROPOMI low-Earth orbit observations (TROPOMI_LEO); (b) GEO-CAPE observations with a TES-like instrument (TES_GEO);

(c) GEO-CAPE observations with a TROPOMI-like instrument (TROPOMI_GEO); and (d) GEO-CAPE observations with a multi-spectral

instrument (MULTI_GEO). Shown is the impact of perturbations of the boundary condition concentrations with Gaussian distribution

N (0.16 ppb) on the optimized scaling factors. Note the different color scale for the MULTI_GEO configuration.

of error reductions in the optimized fluxes when the targeted

timescales are about a week or less. For a 3-day inversion,

the number of pieces of information (DOF) independently

constrained by the GEO observations is about twice as many

as in the case of a LEO configuration (DOF of 266 and

115, respectively). Experiments with TIR GEO and SWIR

LEO configurations demonstrated that the high temporal fre-

quency of GEO observations cannot compensate for weak

sensitivities of the satellite measurement to boundary layer

concentrations, since constraints from a TES-like instrument

in GEO orbit correspond to only about half of the information

content afforded by a TROPOMI instrument in LEO orbit

for a monthly inversion (DOF of 164 and 298, respectively).

In a GEO orbit, the benefit of using a multi-spectral instru-

ment compared to a SWIR instrument has been demonstrated

for weekly to sub-weekly scale flux constraints, with an in-

crease in the DOF of about 50 % for a 3-day inversion. For

the multi-spectral GEO configuration, the information con-

tent is similar for a 3-day or a 1-month optimization (DOF of

397 and 398, respectively). Moreover, comparison of our re-

sults with those from a recent CH4 inversion study by Turner

et al. (2015) suggests that TROPOMI or GEO-CAPE could

improve monthly-scale constraints on emissions by about an

order of magnitude relative to GOSAT.

Over some local CH4 source hotspots (emissions

> 4× 105 kg day−1) in the central US, California and east-

ern US, both SWIR and multi-spectral GEO configurations

allow for nearly complete constraints on emissions (error re-

duction close to 100 %) at a spatial resolution smaller than

100 km× 100 km. These estimates are optimistic, given the

lack of spatial error correlation considered in our prior emis-

sions, which should be addressed in future work, but do re-

veal the potential spatial resolution provided by the measure-

ments alone.

The sensitivity of the optimized emission scaling factors

to uncertainties in initial and boundary conditions has also

been assessed by propagating random perturbations of these

forcings into the flux estimates. While the flux responses to

the boundary and initial condition perturbations can reach

50 and 30 %, respectively, in the case of TROPOMI column

constraints, they were an order of magnitude lower (< 5 %)

in the case of multi-spectral profile observations.
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Figure 10. Sensitivity of the optimized emission scaling factors to uncertainties in initial condition concentrations for a 7-day inversion (1–

8 July 2008), using (a) TROPOMI low-Earth orbit observations (TROPOMI_LEO); (b) GEO-CAPE observations with a TES-like instrument

(TES_GEO); (c) GEO-CAPE observations with a TROPOMI-like instrument (TROPOMI_GEO); and (d) GEO-CAPE observations with

a multi-spectral instrument (MULTI_GEO). Shown is the impact on the optimized emission scaling factors of perturbations of the boundary

layer and free troposphere initial CH4 concentrations with Gaussian distributions N (0.22 ppb) and N (0.46 ppb), respectively. Note the

different color scale for the MULTI_GEO configuration.

With growing concerns about the environmental impacts

of CH4 emissions from the oil and gas industry and the urge

for better monitoring of the US’ CH4 budget, a multi-spectral

instrument onboard geostationary orbit would provide a key

tool to characterize the variability of the CH4 fluxes at a

weekly to sub-weekly timescale, while greatly mitigating

the impact of inverse method uncertainties on the optimized

fluxes. Moreover, such an observational system would allow

for better understanding of the critical role of wetlands in the

global methane budget and their impact on climate change

(e.g., Bloom et al., 2012; Miller et al., 2014). Further in-

vestigations would be needed to quantify the sensitivity of

these results to the choice of the reference CH4 emission in-

ventory, since significant discrepancies in the magnitude and

spatiotemporal distributions of CH4 sources exist between

current bottom-up inventories (Kirschke et al., 2013).

In our study we have neglected prior error correlations in

the absence of robust data and methodology to rigorously es-

timate them. Since error correlations in prior bottom-up in-

ventories nevertheless exist, additional experiments should

be performed to test the sensitivity of our information con-

tent analysis to different error correlation structures. Like-

wise, horizontal spatial correlations associated with model

and observations errors should be included in future OSSEs

in order to obtain more reliable error reduction estimates. We

have also performed the inversion using emission scaling fac-

tors, which effectively places a hard constraint on the spatial

distribution of the emissions – an assumption that warrants

further investigations. The robustness of our results against

model and observational biases should also be investigated.

Finally, following recent studies investigating regional to ur-

ban constraints from geostationary remote-sensing instru-

ments (Polonsky et al., 2014; Rayner et al., 2014), it would be

interesting to apply the present methodological framework to

inversions at much higher spatiotemporal resolution in order

to analyze the ability of such observational systems to extract

information at spatial scales of only a few km2.
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