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A spatially explicit inventory scaling approach to
estimate urban CO2 emissions

Kristian D. Hajny1,2,*, Cody R. Floerchinger3, Israel Lopez-Coto2,4, Joseph R. Pitt2,5,
Conor K. Gately3,6, Kevin R. Gurney7, Lucy R. Hutyra8, Thilina Jayarathne1,9,
Robert Kaeser1, Geoffrey S. Roest7, Maryann Sargent3, Brian H. Stirm10, Jay Tomlin1,
Alexander J. Turner11, Paul B. Shepson1,2, and Steven Wofsy3

Appropriate techniques to quantify greenhouse gas emission reductions in cities over time are necessary to
monitor the progress of these efforts and effectively inform continuing mitigation. We introduce a scaling
factor (SF) method that combines aircraft measurements and dispersion modeling to estimate urban emissions
and apply it to 9 nongrowing season research aircraft flights around New York City (NYC) in 2018–2020.This
SF approach uses a weighting function to focus on an area of interest while still accounting for upwind
emissions. We estimate carbon dioxide (CO2) emissions from NYC and the Greater New York Area (GNA) and
compare to nested inversion analyses of the same data. The average calculated CO2 emission rates for NYC
and the GNA, representative of daytime emissions for the flights, were (49 ± 16) kmol/s and (144 ± 44) kmol/s,
respectively (uncertainties reported as ±1s variability across the 9 flights). These emissions are within
*15% of an inversion analysis and agree well with inventory estimates. By using an ensemble, we also
investigate the variability introduced by several sources and find that day-to-day variability dominates the
overall variability. This work investigates and demonstrates the capability of an SF method to quantify
emissions specific to particular areas of interest.

Keywords: Urban emissions, Carbon dioxide, Emission quantification, Airborne greenhouse gas measurements,
Inventory scaling, New York City

1. Introduction
Carbon dioxide (CO2) emissions from fossil fuel combus-
tion are the largest source of anthropogenic climate
change and urban areas are responsible for a large fraction
of these emissions (Intergovernmental Panel on Climate
Change [IPCC], 2013). According to 2015 inventory data
(Gurney et al., 2020a) and census urban area definitions
(U.S. Census Bureau, 2021c), 43.8% of CO2 emissions
across the contiguous United States came from urban
areas and the urban share of emissions is expected to
increase as populations continue urbanizing (Interna-
tional Energy Agency, 2013; IPCC, 2013; United Nations

Department of Economic and Social Affairs Population
Division, 2019). As such, cities have also been at the fore-
front of greenhouse gas (GHG) reduction efforts (Trencher
et al., 2016; Sethi et al., 2020). Many U.S. cities have set
goals for significant GHG reductions and several states
have passed legislation to invest in renewable energy
(Sierra Club, 2020). In particular, New York (NY) state
recently passed several laws outlining actions to signifi-
cantly reduce GHG emissions with set targets across sec-
tors. The Climate Leadership and Community Protection
Act sets a goal of net zero emissions from electricity,
including purchased electricity, by 2040 and an 85%
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decrease across all sectors by 2050 (Kaminsky, 2019). In
addition to this, New York City (NYC) has passed the Cli-
mate Mobilization Act that includes several bills targeting
building emissions, the largest emitting sector for the city
when including indirect emissions (Cventure LLC et al.,
2017), with large fines for noncompliance (New York City
Council, 2019).

Several recent studies focused on the assessment of
large northeastern U.S. city emissions have been published
(McKain et al., 2015; Ren et al., 2018; Sargent et al., 2018;
Plant et al., 2019; Ahn et al., 2020; Lopez-Coto et al., 2020;
Floerchinger et al., 2021; Pitt et al., 2022). Table 1 high-
lights some key details about 3 of these northeastern U.S.
urban areas for context (U.S. Census Bureau, 2021b). It is
clear from Table 1 that the Greater New York Area (GNA),
or New York-Newark urban area as named in the Census
database (U.S. Census Bureau, 2021c), is significantly
larger (more urban sprawl) and denser than the previously
studied urban areas. Additionally, almost half of the CO2

emissions come from NYC, the dense core of the GNA. All
urban areas in Table 1, including the GNA, are those
defined by the U.S. census. Their definition of urbanized
areas can be summarized as a central urban core and any
densely settled surrounding territory (urban fringe) that
together has a minimum of 50,000 people, typically
including any contiguous urban fringe with at least
1,000 people per square mile (U.S. Census Bureau, 1995).

As cities enact laws with explicit reduction require-
ments, it becomes necessary to have high-precision emis-
sions monitoring techniques to inform progress. This is
often done using self-reported bottom-up inventories,
which involve combining emission factors (e.g., kmol
CO2/m

2 s for residential housing) with activity data (e.g.,
total area of residential homes, m2) to calculate emissions
across source categories. In addition to the self-reported
inventories that cities use, there are published bottom-up
inventories that utilize a combination of emission factors
and activity data, modeling, monitoring station data, fuel
statistics, and so on from agencies like the Energy Infor-
mation Agency and Environmental Protection Agency to
allocate emissions in a gridded field (Gurney et al., 2009;
Gurney et al., 2012; Gately & Hutyra, 2017). Gurney et al.
(2021) discuss in detail the large differences that can exist
between these self-reported inventories and published
inventories. There are also published disaggregated inven-
tories that rely instead on proxies to disaggregate reported
national total emissions to a gridded product. These can

be generated more regularly at a global scale but have
additional uncertainty due to the use of a proxy rather
than the relevant activity data (Janssens-Maenhout et al.,
2017; Oda et al., 2018; Gurney et al., 2019). These pub-
lished inventories can inform policy about emissions and
are often used as priors in atmospheric transport model-
ing efforts (Lamb et al., 2016; Gurney et al., 2019).

Bottom-up inventories rely on a vast amount of input
information, which makes them difficult and time-
consuming to develop. This leads to gaps between
emissions represented in inventories and present-day
emissions. Top-down studies fill this gap and provide an
independent estimate to compare to inventories by using
measurements to quantify emissions in near-real time
(Cambaliza et al., 2014; Lauvaux et al., 2016; Gourdji et
al., 2018; Pitt et al., 2018; Turnbull et al., 2019; Gurney et
al., 2021). For example, Turner et al. (2020) and Yadav et
al. (2021) quantified CO2 reductions during the COVID-19
pandemic and identified the economic sectors most
affected. Such a task would be impossible without both
high-quality inventories and recent high-precision mea-
surements. Timely information like this can be crucial to
inform policy makers about the impacts of legislation,
so they can adjust policy as needed to meet emission
reduction targets.

Three commonly used top-down methods for emission
quantification are the mass balance experiment, inverse
modeling, and inventory scaling. Mass balance experi-
ments provide a domain-total emission rate that can be
calculated relatively quickly based on a simple conceptual
model. However, it can be difficult to define an appropri-
ate background concentration and the area which the
calculated emission rate represents (Cambaliza et al.,
2014; O’Shea et al., 2014; Heimburger et al., 2017; Ren
et al., 2018; Ahn et al., 2020). Inverse modeling techniques
use a dispersion model to simulate concentration en-
hancements at the measurement locations based on an
initial emission map (prior), typically an emission inven-
tory. They then typically weight these data based on pre-
scribed error covariances of the transport model, prior,
and measurements to reach an optimized emission map
(posterior) that reduces the mismatch between the mod-
eled and measured enhancements (Michalak et al., 2004;
Mueller et al., 2008; Stohl et al., 2009; Lauvaux et al.,
2016; Lauvaux et al., 2020; Lopez-Coto et al., 2020).
Scaling approaches follow the same basic premise as an
inverse model except they optimize the entire emission

Table 1. Statistics for 3 northeastern U.S. cities (U.S. Census Bureau, 2021b). DOI: https://doi.org/10.1525/
elementa.2021.00121.t1

Urban Area
Area
(km2)

Population
(Million People)

Population Density
(People/km2)

Bottom-Up CO2

Emissions (kmol/s)

Greater New York Area (NY-NJ-CT) 8,936 18.4 2,054 103

Boston (MA-NH-RI) 4,852 4.2 862 26

Washington (DC-VA-MD) 3,423 4.6 464 20

Bottom-up emissions are from Vulcan (Gurney et al., 2020a), discussed further in the Methods and Materials section.
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map using a single scaling factor (SF). This assumes that
the spatial distribution of emissions in the prior is accu-
rate; however, it allows for a simpler approach to calculate
posterior emissions and their sensitivity to model para-
meters while avoiding the complexities associated with
defining error covariances (McKain et al., 2015; Pitt et
al., 2018; Sargent et al., 2018; Feng et al., 2019; Kunik et
al., 2019; Pitt et al., 2022). Karion et al. (2019) and Nei-
ninger et al. (2021) discuss work using several of these
approaches and compare the results across them.

In this work, we introduce a variation of the SF
approach. This approach requires a prior emission map
of surface fluxes, a dispersion model to relate surface
emissions to downwind measurements, and measured
concentrations against which these modeled enhance-
ments are compared. No other measured quantities are
used. As legislation is limited to political boundaries, the
focus of an SF approach should be on such discrete areas
of interest (AOIs). However, measurements are influenced
by all sources upwind and not solely those within an AOI,
so modeled enhancements must incorporate all upwind
emissions (i.e., use a large modeling domain) to appropri-
ately compare to measured enhancements. As such, defin-
ing an appropriate background concentration to separate
the AOI from other upwind sources is crucial (Mueller et
al., 2018; Pitt et al., 2018; Sargent et al., 2018). Here, we
begin with a simple long-range background based on the
lowest observed and modeled concentrations. This allows
us to relate measured and modeled enhancements as it
accounts for the regional background concentration that
only affects measurements, but the resulting enhance-
ments represent all upwind emissions within the modeled
domain (Lopez-Coto et al., 2020; Pitt et al., 2022). Using
these enhancements in an SF approach requires assuming
that the SF for the entire upwind region is the same as
that of just the AOI. This could be particularly problematic
with small AOIs such as cities where only a fraction of the
total emissions may originate from the AOI. For example,
one can imagine a prior with city emissions lower than
true emissions (SF ¼ 2) while those in the surrounding
semirural area are slightly high (SF ¼ 0.8). If this spatial
heterogeneity across the domain was ignored, the obser-
vational analysis for all upwind emissions would result in
a smaller SF than that of city emissions. If this smaller SF is
then applied to just the city, the AOI, the posterior city
emissions would be biased low. On the other hand, if the
upwind sources were unaccounted-for in the simulation
domain, the measured enhancements that originated in
those sources would be attributed to the AOI, causing the
city emissions to be biased high instead.Worse still, flights
are influenced by upwind sources to varying degrees,
meaning that this bias would vary from flight to flight,
increasing daily variability. To minimize these effects, we
have developed an SF approach that is specific to an AOI
by weighting modeled and measured enhancements by
the fraction of the modeled enhancements originated by
the emissions only in the AOI, in addition to accounting
for the long-range background.

Here, we apply this SF approach to 9 nongrowing-
season flights downwind of NYC, the details of which are

available in Supporting Information (SI) Table S1. We cal-
culate posterior emission rates for 2 AOIs: the 5 NYC bor-
oughs (Department of City Planning [DCP], n.d.) and the
larger GNA (U.S. Census Bureau, 2021c), which includes
NYC, and compare to an inversion analysis using the same
AOIs (Pitt et al., 2022). These AOIs are clearly outlined in
Figure 1A and B. Finally, we investigate multiple methods
of calculating the SF and discuss the variability in the
resulting posterior emission rates across SF calculation
method, flight day, choice of meteorological model out-
puts (MET) used in dispersion modeling, and choice of
prior. The different assumptions inherent in this method
make it a good complement to more complex inversion
approaches when the spatial distribution of prior emis-
sions is sufficiently accurate to reproduce the measured
plume structure.

2. Methods and materials
2.1. Flight design and equipment

All flights were conducted using Purdue University’s Air-
borne Laboratory for Atmospheric Research (ALAR),
a modified twin-engine Beechcraft Duchess (Cambaliza
et al., 2014; Heimburger et al., 2017). ALAR is equipped
with a GPS/INS (Global Positioning System/Inertial Navi-
gation System) system, a Best Air Turbulence probe for
high precision 3-dimensional winds (Garman et al., 2006;
Garman et al., 2008), and a Picarro Cavity Ring Down Spec-
trometer designed for measurements of CO2, methane
(CH4), and water vapor (H2O; Crosson, 2008), although
this work focuses exclusively on CO2 emissions.
Measurements are reported as dry air mole fractions, in
units of micromoles per mole of dry air, or parts per million
(ppm). Each flight included multiple in situ 3-point cali-
brations using National Oceanic and Atmospheric
Administration-certified standard cylinders of CO2 and
CH4 (WMO-CO2-X2007, WMO-CH4-X2004A; Dlugokencky
et al., 2005; Tans et al., 2017; see SI section S1 for detailed
calibration information).

Over the course of the campaign, we used 2 different
G2301-f analyzers and a G2401-m analyzer. The G2301-f
analyzers were both run in low-flow mode, which measures
each species every approximately 1.2 s and approximately
1.4 s, respectively. The G2401-m analyzer measured each
species approximately every 2.3 s.We estimate the precision
of the CO2 measurements to be 0.04 ppm based on the
average 1s variability during calibrations.

This campaign involved 9 flights around NYC in Febru-
ary/March of 2019 and 2020 and November of 2018 and
2019 when the biosphere was less active. Details about
the conditions of each flight are available in SI Table S1.
The flights are discussed throughout the text using
sequential research flight (RF) labels (e.g., RF4). Figure
1A and B shows the corresponding flight dates. Airborne
measurements are sensitive to emissions distributed over
a wide area relative to ground-based observations and can
capture any vertical variability in CO2 concentrations. All
flights were conducted by flying multiple transects down-
wind of the AOIs at different heights within the boundary
layer.Within a given flight, the flight track across all trans-
ects was kept as constant as possible. Most flights also
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Figure 1. Flight tracks and carbon dioxide (CO2) priors. (A and B) All flight tracks overlaid on a state map (U.S. Census
Bureau, 2021a) with the areas of interest highlighted in green, (A) highlighting the Greater New York Area (GNA) and (B)
highlighting New York City. November 9, 2018, March 1, 2019, and March 27, 2019, had similar downwind passes over
the Hudson River and thus cannot be distinguished.Winds were from the east on November 9, 2018, March 1, 2019, and
March 27, 2019, west on November 15, 2019, and March 4, 2020, southwest on November 10, 2019, and February 16,
and north on March 26, 2019, and March 7, 2020. (C–F) Each CO2 prior across the modeling domain overlaid on
a state map, with the GNA outlined in blue. All priors are in log10 (kg C/km2 h) with the color scale saturated at
log10 (0) kg C/km2 hr. Water areas differ as Vulcan and the Anthropogenic Carbon Emissions System are national and
thus do not extend beyond the coast, Emission Database for Global Atmospheric Research is global and includes marine
emissions, and Open-Source Data Inventory for Anthropogenic CO2 does not include emissions over water. DOI: https://
doi.org/10.1525/elementa.2021.00121.f1
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included an upwind pass flown just before/after the
downwind passes to identify inflowing plumes of elevated
GHG concentrations. Flight tracks for the downwind
passes for all 9 flights are shown in Figure 1A and B with
the 2 AOIs, NYC, and the GNA, highlighted. Complete
flight tracks can be seen in Figure S1. The large urban
areas of Philadelphia (39.95 N, 75.18 W) and Washington,
DC–Baltimore (39.10 N, 76.85 W) are also clear in Figure
1B–E as emission hot spots to the southwest of NYC,
making them important potential upwind sources when
winds were from the southwest.

This work employs an ensemble approach to estimate
the variability in the result introduced by the various
inputs (transport models and emission inventories) as well
as SF calculation methods and avoids relying entirely on
any one particular member. We use a total of 4 meteorol-
ogy data products (MET), 2 turbulence parameterizations
in the dispersion model (making 8 different transport
models), 4 bottom-up inventories as priors, and 5 SF cal-
culation methods, all discussed in detail below and sum-
marized in Table 2. This results in a total of 160 ensemble
members per flight. The distributions of posterior emis-
sion rates across these 160 ensemble members times 9
RFs (1,440 individual posterior emission rates) are dis-
cussed in the results. Relying on the mean of a plausible
group of, for example, MET, mitigates potential errors in
any one particular MET while also allowing us to estimate

the contribution of MET uncertainty (quantified as the
spread in the posterior emission rate across the 8 trans-
port models) to the overall posterior emission rate
uncertainty.

2.2. Transport modeling

The surface influence, or footprint, of flight data was
determined using the Hybrid Single Particle Lagrangian
Integrated Trajectory Model (HYSPLIT) v 5.0.0 (Draxler &
Hess, 1998; Stein et al., 2016; Loughner et al., 2021). A
footprint, or influence function, represents the measure-
ment’s sensitivity to surface emissions, providing a quanti-
tative link between measured enhancements in
concentration and upwind surface fluxes. Each HYSPLIT
run was repeated using 4 different publicly available MET
as an input and 2 different parameterizations of vertical
velocity variance, Kantha–Clayson (Kantha & Clayson,
2000) and Hanna (Hanna, 1982), as described in Table 2
(see Table S2 for the spatiotemporal resolution of each
MET). Footprints were generated on a large modeling
domain, bounded by 34.4 N, 44.4 N, 83.7 W, and 69.7 W
at a resolution of 0.08� 0.08, as shown in Figure 1B–E, to
ensure that potentially significant upwind sources were
included in the simulation.

Measured concentrations were block-averaged to
a 1-min resolution for all flight data within the boundary
layer. HYSPLIT particle releases for each minute consisted

Table 2. Names and acronyms for all ensemble members used. DOI: https://doi.org/10.1525/elementa.2021.00121.t2

Category Acronym Name

Meteorology model outputs
(MET)

HRRR High Resolution Rapid Refresh (National Oceanic and Atmospheric
Administration, 2020)

GFS Global Forecast System (National Oceanic and Atmospheric Administration, 2020)

NAMS North American Mesoscale Forecast System (National Oceanic and Atmospheric
Administration, 2020)

ERA5 European Centre for Medium Range Weather Forecasts Fifth Reanalysis
(Copernicus, 2020)

Turbulence parameterizations KBLT ¼ 2 Kantha–Clayson (Kantha & Clayson, 2000)

KBLT ¼ 5 Hanna (Hanna, 1982)

Priors ACES—2017 Anthropogenic Carbon Emissions System, a 1-km2 bottom-up national prior
(Gately & Hutyra, 2017)

Vulcan—2015 A 1-km2 bottom-up national prior (Gurney et al., 2020a)

EDGAR—2018 Emission Database for Global Atmospheric Research, an approximately 12-km2

disaggregated global prior (European Commission, 2019; Crippa et al., 2019)

ODIAC—2018 Open-Source Data Inventory for Anthropogenic CO2, a 1-km
2 disaggregated global

prior (Oda & Maksyutov, 2015)

SF calculation methods I Integral

OLS Ordinary least squares regression

MA Major axis regression

B Bayesian optimization

2B Bayesian optimization including a simultaneous linear background correction
(slope and intercept)

Prior acronyms include the year that the data represent.
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of approximately 1,000 particles distributed across the
locations flown during that minute. Modeled anthropo-
genic CO2 enhancements along the flight track were then
simulated by multiplying footprints (ppm�ð m2s

mmol Þ or mole
fraction/flux) from the HYSPLIT dispersion model (Draxler
& Hess, 1998; Stein et al., 2016; Loughner et al., 2021)
with emissions from one of the 4 priors (converted to
units of mmol

m2s ). Modeled biogenic CO2 enhancements were
then calculated in the same manner using the vegetation
photosynthesis and respiration model (VPRM; Mahadevan
et al., 2008; Gourdji et al., 2022) and added to modeled
anthropogenic enhancements. This simulates the mixing
ratio enhancement in CO2 (ppm) relative to a long-range
background value at the boundary of the domain, and this
background must be subtracted from measured concen-
trations to compare the measured enhancements with
these modeled enhancements.

2.2.1. Background calculations

We calculate the long-range background using a percentile
method. We define times when we sampled background
air using both measured and modeled data to mitigate the
potential risk of selecting background times with large
modeled enhancements in cases where the modeled
plume is mislocated. First, we add the 1-min block-
averaged modeled and measured data pointwise. Then,
we identify the timestamps with concentrations between
the first and fifth percentile of concentrations from this
combined data set. These timestamps represent back-
ground air sampling for the data sets. The measured back-
ground is then defined as the average of all measured data
during these timestamps, and the modeled background is
the average of all modeled data during these timestamps.
As the timestamps chosen to represent background are
partially dependent on the modeled data, this process is
done separately for every flight and for every unique
ensemble member to yield slightly different backgrounds.

2.3. Prior emissions

We use 2 published bottom-up national priors, Anthropo-
genic Carbon Emissions System (ACES) version 2.0 (Gately
& Hutyra, 2017) and Vulcan version 3.0 (Gurney et al.,
2020b) as well as 2 global disaggregated priors, Open-
Source Data Inventory for Anthropogenic CO2 (ODIAC)
version 2019 (Oda & Maksyutov, 2015), and Emission
Database for Global Atmospheric Research (EDGAR) ver-
sion 5 (Crippa et al., 2019; European Commission, 2019)
to calculate modeled anthropogenic CO2 emissions. Both
ACES and Vulcan are hourly, 1-km2 national bottom-up
CO2 priors. As bottom-up products, they both incorporate
data from emission factors and activity data, modeling,
fuel statistics, and so on to allocate emissions in a gridded
field. They generally make use of similar methods and data
sets, but there are still several methodological differences
that can lead to some significant gridcell differences, as
discussed in detail by Gurney et al. (2020b). For the anal-
yses using Vulcan and ACES, Canadian emissions within
the domain are taken from EDGAR since ACES and Vulcan
do not extend beyond the United States. EDGAR (Janssens-
Maenhout et al., 2017; Crippa et al., 2019; European

Commission, 2019) is a monthly, 0.1� (approximately 12
km2 for the northeast United States) global prior that dis-
aggregates national emissions using nationally specific
activity data and emission factors combined with the
appropriate proxies for different economic sectors (e.g.,
human population, road density). It also makes use of the
Carbon Monitoring for Action database for point sources.
Lastly, ODIAC (Oda & Maksyutov, 2015; Oda et al., 2018) is
a monthly, 1 km2, global prior that disaggregates the Car-
bon Dioxide Information Analysis Center national emis-
sions primarily by using the Carbon Monitoring for Action
database for point sources and night-light satellite data for
nonpoint sources. For all analyses, we use annually aver-
aged emissions for the most recent year available for each
prior, which is indicated in Table 2. We also regridded all
priors to match the extent and resolution of the domain
using a conservative regridding scheme provided by the
Python package xESMF (Zhuang, 2021).

Measured concentrations represent bulk emissions
from all upwind sources, including both anthropogenic
emissions and biogenic emissions, but all priors used only
represent anthropogenic emissions. To incorporate bio-
genic CO2 emissions into the modeled emissions, we also
used a modified version of VPRM (Mahadevan et al.,
2008), described in detail by Gourdji et al. (2022). VPRM
is an empirical model optimized using flux tower data. It
calculates net ecosystem exchange (respiration þ photo-
synthesis) as a function of the enhanced vegetation index,
land surface water index, temperature, and photosynthet-
ically active radiation using a combination of in situ mea-
surements and remote sensing. We used hourly fluxes for
the dates of the flight data, generated at a 0.02�

resolution.

2.4. Weighting approach

Figure 2 shows 3 examples of the measured and modeled
enhancements, the modeled enhancements originating
only from the AOIs, and the weighting functions. It is clear
from Figure 2 (A, C, and E) that AOI and non-AOI
enhancements show concurrent peaks in many cases. As
previously mentioned, the long-range background sub-
tracted from both measured and modeled values allows
them to be directly compared but does not address
sources upwind of the AOI overlapping with those of the
AOI (e.g., Philadelphia in RF5). To address this problem,
we have developed a weighting function to better isolate
the enhancements of specific AOIs.

We calculate a weighting function for 2 different AOIs,
the 5 NYC boroughs (including water areas; DCP) and the
GNA (U.S. Census Bureau, 2021c), which includes NYC, as
highlighted in Figure 1B and A, respectively. The weight-
ing function is defined pointwise (Weightingi) as the frac-
tion of modeled enhancements, that is, the product of
prior and footprint, from the AOI (ModeledAOIi ) divided
by the modeled enhancements for the entire domain
(Modeledtotali ) as shown in Equation 1. As the weighting
function is calculated using modeled enhancements, it
relies somewhat more heavily on the modeling (MET and
prior) than simply using a long-range background. This
approach, like all scaling approaches, is also entirely
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reliant on the prior for the spatial distribution of emis-
sions. Weights are then multiplied with total modeled
enhancements, meaning the sum of AOI and non-AOI
enhancements (i.e., the solid red line in Figure 2) and
measured enhancements after subtracting their respective
long-range backgrounds. This weighting allows us to min-
imize the effect of non-AOI sources before calculating an

SF and can be thought of as an additional background
subtraction that is specific to the AOI.

Weightingi¼
ModeledAOIi

Modeledtotali

: ð1Þ

Flights with significant influence upwind of the AOI,
such as the flight on November 10, 2019 (RF5), would be
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Figure 2. Example time series of measured carbon dioxide (CO2) enhancements, modeled CO2 enhancements,
and weighting functions. Measured and modeled CO2 enhancements over time for the flights on (A and B) March 1,
2019, (C and D) March 27, 2019, and (E and F) November 10, 2019, using global forecast system modeled winds and
the Vulcan prior. (A, C, and E) Use New York City (NYC) as the area of interest (AOI) and (B, D, and F) use the Greater
New York Area. Each valley–peak–valley represents a downwind transect covering the extent of the plume. Upwind
data are included for the flights with upwind transects, typically with near 0 weighting for NYC. The shaded regions
represent the modeled enhancements that originated from the AOI, red lines represent the modeled enhancements
from all upwind sources, and the green dashed lines represent the weighting functions. The flight on November 10,
2019, has smaller weighting and a larger mismatch between measured and modeled enhancements because of the
SW winds mixing significant Philadelphia emissions with those from the AOI. DOI: https://doi.org/10.1525/
elementa.2021.00121.f2
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poorly suited to any SF approach without some way to
isolate the AOI, as the measurements are heavily influ-
enced by non-AOI emissions. In such cases, one likely
cannot assume that the SF for the AOI is consistent with
that for all upwind sources either, and therefore, the influ-
ence of these non-AOI emissions could limit the number
of usable flights (to seven of the nine in our case) if it is
unaccounted-for. However, with the weighting approach,
these flights can still be used, as non-AOI emissions are
deweighted appropriately to focus the SF primarily on the
AOI. Weighting should also reduce the variability from
flight to flight as the footprints are more comparable
flight-to-flight without the influence of regions farther
upwind.

2.5. SF approaches

We calculated SFs, which represent the factor by which the
weighted modeled enhancements need to be multiplied
to best match the weighted measured enhancements,
using 5 methods. We calculated a single SF for each
ensemble member for each flight (i.e., not per transect).
The ensemble approach allows us to balance the benefits
and drawbacks of each technique. For example,
regression-based approaches would be more heavily
impacted by a poor correlation between measured and
modeled enhancements, which could occur if plumes are
offset due to prior or transport model error. Bias correc-
tion methods would, on the other hand, be most impacted
by background errors. Posterior emission totals for the
AOIs were then calculated by multiplying these SFs by the
total prior emissions within the AOIs, which can be seen in
Figure 1B–E (see Figure S2 for the priors shown over the
AOIs only).

2.5.1. Integral (I) SF method

The first method was an integral ratio SF (I).We integrated
weighted enhancements across each flight for both
measured and modeled enhancements. The ratio of these
integrated enhancements gives an SF for that flight
(Equation 2)

Integral SF ¼
P
ðWeighti½CO2obs;i � BGobs�Þ

P
ðWeighti½CO2mod;i � BGmod�Þ

: ð2Þ

Here, CO2obs and CO2mod represent the measured and
modeled mole fractions, respectively, while BGobs and
BGmod represent the measured and modeled long-range
background mole fractions, Weight represents the weight-
ing function and the index i represents the index of the 1
min measurements along the flight.

2.5.2. Regression (ordinary least squares [OLS] and

major axis [MA]) SF methods

We also calculated SFs using an OLS and MA fit of
weighted modeled enhancements (y) against weighted
measured enhancements (x) across a flight. The slope of
this fit is the reciprocal of the SF for this approach. This
was done with the intercept forced to zero as this can
partially mitigate the impact of poor correlation on the
slope (see SI Section S2).

2.5.3. Bayes (B and 2B) SF methods

Lastly, we calculated SFs using 2 different approaches that
rely on Bayes’s Theorem, described more thoroughly in SI
section S3. Broadly, these involve minimizing the differ-
ences between measured and modeled enhancements,
similar to regression approaches, but including a regular-
ization term that considers the uncertainties and prior
knowledge of the SF, similar to an inversion. Optimum
SFs were obtained by minimizing the cost function J
(Enting, 2002; Tarantola, 2005):

JðlÞ ¼ 1
2
½ðl� lbÞT P�1

b ðl� lbÞ þ ðHðlÞ � yÞT R�1ðHðlÞ � yÞ�;

ð3Þ

where l is the state vector (i.e., SF), lb is the first guess or
a priori state vector, Pb is the a priori error variance matrix,
which represents the uncertainties in our a priori knowl-
edge about the state vector, and R is the model-data error
covariance matrix, which represents the uncertainties in
the modeled enhancements H(l) and the observations y,
also known as model-data mismatch. In our case, R is
a diagonal covariance matrix that includes background
uncertainty, measurement uncertainty, and transport
modeling uncertainty added in quadrature.

The first approach (B) optimizes a single SF using the
analytical solution to Equation 3. In the second approach
(2B), 3 parameters are simultaneously optimized in the
same manner. In this case, the first term is the SF, the
second term is an offset to account for potential back-
ground bias (i.e., intercept), and the third term is the
slope of a linear trend to account for spatial gradients in
the background. In this work, we chose as prior SFs lb ¼
[1 0 0] with prior uncertainties Pb ¼ [1 1 0.1] for 2B and
for B we use lb ¼ [1] and Pb ¼ [1].

3. Results and discussion
We report posterior anthropogenic emission rates based
on the range of results across the various MET, SF meth-
ods, flight days, and priors using the standard deviation
across posteriors, one category at a time. These provide
information about the variability in posterior emission
rates introduced by each of these aspects of the ensemble.
We then present campaign-averaged emission rates for
both AOIs as NYC represents a more policy-relevant area,
while the wider GNA better represents the area of sensi-
tivity for our flights. The campaign average, representative
of daytime emissions during our flight days, is the average
posterior for the AOI across all 160 ensemble members
and 9 flights (for a total of 1,440 calculated posterior
emission rates).

In this work, the biogenic fluxes from VPRM are used
solely to ensure the best possible comparison between
measured and modeled enhancements. The VPRM mod-
eled emissions are generally small and, after background
subtraction, have little effect on the modeled enhance-
ments. However, they have a more significant effect on
the weighting functions as the rural areas outside of the
AOIs have more significant biogenic emissions, thus
affecting the ratio between AOI and non-AOI emissions
(i.e., the weighting functions). This means that ignoring
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the biogenic contribution would have led to an overesti-
mation of the AOIs emission rates. This can be seen in SI
Figures S3 and S4.

3.1. Posterior emission rates

The posterior emission rates across the ensemble are
shown in Figure 3 and summarized in Table 3. Across
all parameters, the campaign-averaged posterior emission
rate for NYC is (49 ± 16) kmol/s (mean ± 1s), and for the
GNA, it is (144 ± 44) kmol/s, with the bounds represent-
ing the 1s variability across the 9 flights. We rely on the
daily variability when discussing the campaign-averaged
posterior emission rates because the daily variability incor-
porates both real variability in emissions and apparent
variability caused by methodological sources, including
those that are not captured by the ensemble spread, which
are discussed in detail below.

The campaign-averaged posterior emission rates are
larger than any of the prior emission rates (colored
lines in Figure 3), but this is as expected given the
priors are annual averages while all flights occurred
during daytime hours in the nongrowing season when
anthropogenic emissions tend to be larger. To more
appropriately compare to the inventories, we use emis-
sion rates from the hourly ACES (year 2017) and Vulcan
(year 2015) inventories for the dates and times that
best represent the flights as was done in Pitt et al.
(2022; abbreviated as ACI for the Anthropogenic Car-
bon Emissions System inventory and VUI for Vulcan in
Figure 3, see SI section S4 for a detailed description).
The average emission rates for these representative
inventories are summarized in Table 3. For ACES, the
average representative emission rates are (46 ± 9)
kmol/s for NYC (7% less than our posterior estimate)
and (145 ± 21) kmol/s for the GNA (<1% greater than
our posterior estimate). For Vulcan, the average repre-
sentative emission rates are (52 ± 10) kmol/s for NYC
(6% greater than our posterior estimate) and (124 ±
20) kmol/s for the GNA (14% less than our posterior
estimate). Bounds here represent the 1s variability
across 45 representative days. Agreement for both AOIs
is within the daily variability of the representative
inventories and well within the daily variability of the
posterior emission rates. This level of agreement for
both AOIs, even though the SFs differ by as much as
50%, supports the argument that using weighting
functions helped us to separate AOI emissions from
non-AOI emissions. Although it is difficult to directly
compare these emission rates to the NYC self-reported
inventory (SRI), a recent study by Gurney et al. (2021)
compared annual 2015 Vulcan emissions with the 2015
NYC SRI, considering only source categories for which
the SRI did not include any indirect emissions (i.e.,
Scope 2 or 3). That study found that the total NYC
CO2 emissions over these source categories in the SRI
were 19% lower than the equivalent Vulcan estimates.

3.2. Sources of variability

The variability in the posterior emission rate with respect
to the prior used is 14% for NYC and 8.1% for the GNA

(Figure 3A and B). This is an improvement from the var-
iability across the prior emission rates, which show 44%
variability in NYC and 35% variability in the GNA across
the 4 priors, driven largely by ODIAC. If ODIAC is
excluded, then the variability in the posterior emission
rate drops to 6.6% for NYC and 7.9% for the GNA. This
is still an improvement from the variability in the prior
emission rates excluding ODIAC, which are 9.1% for NYC
and 13.3% for the GNA. The variability across the trans-
port models (MET and turbulence parameterizations) is
5.4% for NYC and 5.7% for the GNA (Figure 3C and D).
Additionally, posterior emission rates using the vertical
turbulence option based on Hanna (1982; HYSPLIT setting
kblt ¼ 5) are consistently lower than those based on
Kantha–Clayson (Kantha & Clayson, 2000; HYSPLIT setting
kblt ¼ 2), with mean posterior emission rates that are, on
average, 3.3% lower. This feature was seen in Pitt et al.
(2022) as well. The variability across the 5 SF calculation
methods is only 2.2% for NYC and 3.6% for the GNA
(Figure 3E and F), making this the smallest source of
variability. Finally, the daily posterior emission rate vari-
ability is 32% for NYC and 31% for the GNA (Figure 3G
and H), making it a larger source of variability than all
other terms combined in quadrature, that is, an estimate
of the method’s uncertainty (15% for NYC and 10% for
the GNA).

These variabilities are summarized in Table 3 and com-
bined to provide an estimation of the overall variability for
the posterior emission rates as in Lopez-Coto et al. (2020)
and Pitt et al. (2022). Combining these terms assumes that
they are independent sources of variability, which is
unlikely to be true. Additionally, the choice of ensemble
members (MET, priors, etc.) could impact the ensemble
spread across these parameters. Therefore, the estimated
variabilities may not represent the true uncertainties, but
they do still provide an estimate of the likely variability
introduced by the various model choices. If this SF
approach is used over larger timescales to assess trends,
then the daily variability is also a relevant part of the
campaign-averaged posterior variability. This results in
a combined variability more comparable to the uncertain-
ties for individual mass balance experiment approaches
(Cambaliza et al., 2014; O’Shea et al., 2014; Heimburger
et al., 2017; Ren et al., 2018; Ahn et al., 2020). It is worth
noting that while the calculated daily variability is large
(approximately 32%), the 95%, 2-sided confidence inter-
vals (t1�a=2;N�1 � s=

ffiffiffiffiffi
N
p

, t0.975, 8 ¼ 2.306) of our cam-
paign mean with 8 degrees of freedom (N � 1) are
smaller (approximately 25%) and can potentially be fur-
ther reduced by adding additional flights.

Real variability in the inventories themselves is signif-
icant, including a factor of �1.5 change between summer
and winter and day-to-day variability of �15% (see Figure
S6). This intraannual variability alone is much larger than
the annual reductions that policies for many cities, includ-
ing NYC, would require. The daily variability in posterior
emission rates is even larger than that of the representa-
tive days in ACES (19% for NYC and 15% for the GNA) or
Vulcan (19% for NYC and 16% for the GNA). Potential
reasons for this increased daily variability with the SF
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Figure 3. Boxplots of the posterior carbon dioxide (CO2) emission rates for New York City (NYC) and the
Greater New York Area (GNA). Boxplots of the ensemble of posterior CO2 emission rates for NYC and the GNA,
grouped by (A and B) prior, (C and D) meteorological model outputs (MET), (E and F) scaling factor calculation
method, and (G and H) flight day. Boxes indicate the 25th–75th percentile, whiskers extend to the most extreme data
point within 1.5 times the interquartile range of the box, and circles mark any data outside these bounds. ACI and VUI
represent the Anthropogenic Carbon Emissions System and Vulcan inventories for similar days and times as the flights
(see SI Section S4 for details). The MET are abbreviated as ER for the European Centre for Medium Range Weather
Forecasts Fifth Reanalysis, GF for the Global Forecast System, HR for the High Resolution Rapid Refresh, and NA for
the North American Mesoscale Forecast System, while the 2 and 5 represent the Kantha–Clayson (Kantha & Clayson,
2000) and Hanna (Hanna, 1982) turbulence parameterizations, respectively. DOI: https://doi.org/10.1525/
elementa.2021.00121.f3
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approach are largely the same as previously discussed for
inversions (Lopez-Coto et al., 2020; Pitt et al., 2022). The
likely causes can be summarized as: (1) spatiotemporal
aliasing, (2) day-to-day variability in transport model
performance, (3) underestimated daily variability in
inventories, and (4) interannual variability. The aliasing
stems from the fact that each flight samples a somewhat
different footprint, that is, is more sensitive to different
parts of the AOI. Additionally, some sources have large
hourly variability and are sampled at somewhat different
times on different flights. These two effects cause spatio-
temporal variability in emissions to appear as daily variabil-
ity in emissions, as discussed in detail in Lopez-Coto et al.
(2020). Increasing the number of simultaneous measure-
ments was suggested by Lopez-Coto et al. (2020) as a way
to at least partially alleviate this spatiotemporal aliasing.
The transport model ensemble cannot account for poor
performance across the ensemble and the performance will
vary by day. The daily variability of emissions is underesti-
mated by inventories because the temporal profiles of emis-
sions used in inventories rely on some degree of
interpolation or proxy data that can smooth out some tem-
poral variability (making it akin to a climatology rather than
a weather of emissions). The daily variability for the years
that we flew also may have been larger than that of the
inventory years, which are 2017 for ACES and 2015 for
Vulcan. Lastly, the flights cover 2 winters (November
2018–March 2020), and some interannual variability in
emissions may exist.

3.3. Comparison to inversion

These flights were also analyzed using a nested Bayesian
inversion with similar ensemble members in Pitt et al.
(2022). The data processing (long-range background, mod-
eling parameters, etc.) of this work matches the base case
of Pitt et al. (2022). This allows for a direct comparison of
the results using these 2 different techniques as summa-
rized in Table 3. The campaign-averaged posterior emis-
sion rate calculated in this work using an SF approach is
9.1% greater than the inversion-based campaign-averaged
posterior emission rate for NYC and 15% greater for the
GNA. This is well within the 1s combined variability of

either method and both approaches show good agree-
ment with representative inventory estimates from ACES
and Vulcan, providing confidence in both approaches and
in the inventories. Daily average emission rates are also
highly correlated between methods, with a Pearson corre-
lation that is over 0.9 for both AOIs. Additionally, the
relative contribution of the different sources of variability
is quite similar between the methods.

Interestingly, the SF approach shows more consistent
relative daily variability (i.e., as a percentage) between
the two AOIs than the inversion analysis, which exhibits
increased relative variability for NYC. This increased rel-
ative variability for NYC is also observed in the represen-
tative inventories, although with lower values. However,
in absolute terms (kmol/s), the SF approach shows larger
variability for the GNA and almost the same variability
for NYC. Both this and the larger campaign-averaged
posterior emission rate of the SF approach are due to
the different assumptions inherent to these approaches.
Inversions directly optimize both AOI and non-AOI
sources and can adjust the spatial distribution of the
prior although they default to the prior value in areas
that have no data with footprint influence. The SF
approach with a weighting function applies a single SF
to the prior AOI, so it assumes that the prior distribution
is accurate (as does any scaling approach) and it can only
separate AOI from non-AOI emissions by assuming the
AOI: non-AOI emission ratio in the prior is accurate.
Finally, although the ensemble constructed and methods
used were different, Lopez-Coto et al. (2020) also saw
similar component variabilities in a study using flight
data in an ensemble of inversions for the Washington,
DC–Baltimore metropolitan area. The authors saw 33%
daily variability, 7%–15% variability across transport
models (MET and turbulence parameterizations, includ-
ing an experimental turbulence parameterization in HYS-
PLIT), and 11% variability across priors (including a flat
prior with no spatial information).

4. Conclusions
The SF ensemble approach used here avoids many of the
issues faced when applying a mass balance method or

Table 3. Posterior emission rates and relative 1s variabilities across each parameter. DOI: https://doi.org/10.1525/
elementa.2021.00121.t3

Value

GNA NYC

SF Inversion VUI ACI SF Inversion VUI ACI

Posterior (kmol/s) 144 125 124 145 48.6 44.6 51.5 45.5

Daily variability 31% (44) 31% (39) 16% (20) 14% (21) 32% (16) 41% (18) 19% (9.8) 19% (8.8)

Prior variability 8.1% (12) 7.9% (9.9) NA NA 13.6% (6.6) 5.7% (2.5) NA NA

MET variability 5.7% (8.2) 3.8% (4.7) NA NA 5.4% (2.6) 4.9% (2.2) NA NA

SF method variability 3.6% (5.2) NA NA NA 2.2% (1.1) NA NA NA

Combined variability 33% (47) 33% (41) NA NA 35% (17) 41% (18) NA NA

The values in parentheses indicate the absolute 1s variability in kmol/s. GNA ¼ Greater New York Area; NYC ¼ New York City;
ACI ¼ Anthropogenic Carbon Emissions System inventory; VUI ¼ Vulcan inventory; SF ¼ scaling factor; NA ¼ not applicable.
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nonweighted SF methods to calculate urban emissions, by
directly relating emissions to a source area and prior using
transport modeling. It is also simpler to apply than a full
inverse modeling approach making it useful for broad
applications. Since the approach relies on different under-
lying assumptions, it provides a good complement to
these alternative methods and has been shown here to
provide similar results to an inverse modeling study using
the same data. Both approaches also agree well with
inventory estimates for both AOIs. This level of agreement,
especially given the GNA had SFs as much as 50% larger
than NYC SFs, supports the claim that the weighting func-
tion is able to reduce the effect of non-AOI emissions.
This case adds to the literature showing that CO2 inven-
tory estimates, as well as transport models, are generally
able to represent measurements relatively well (Lauvaux
et al., 2016; Sargent et al., 2018; Ahn et al., 2020; Lau-
vaux et al., 2020; Lopez-Coto et al., 2020). The variability
due to meteorology and that due to the priors were both
relatively large sources of posterior emission rate vari-
ability, which suggests that improvements in both trans-
port modeling (both HYSPLIT and the meteorological
models that feed it) and bottom-up inventories are nec-
essary to further reduce uncertainties in quantification
methods such as this. This approach also resulted in pos-
terior emission rates that were broadly consistent across
priors even though EDGAR is a 10� coarser global prod-
uct and ODIAC was initially biased quite low for the
region. However, the SFs are sensitive to a number of
errors as shown by the previous work (Pitt et al., 2018;
Sargent et al., 2018; Karion et al., 2019) as well as here
and, thus, a careful model-data screening must be done
to avoid large excursions in the estimations. Examples
include most SF approaches used require a high correla-
tion between modeled and measured enhancements, any
SF approach requires an accurate spatial distribution of
prior emissions, there must not be significant upwind
sources outside the model domain, and sources outside
an AOI must be considered.

The inclusion of the upwind sources in the simula-
tion domain (i.e., using a large domain) combined with
the weighting function allows this approach to appro-
priately differentiate between emissions from particular
AOIs and emissions from farther upwind, addressing the
last two concerns. This allows us to focus on emissions
within political and legal boundaries, such as cities, that
are of particular interest for emissions quantification
and trend analysis. Additionally, the ensemble approach
used here can partially minimize the influence of some
of the other limitations, and thus, it is preferred as
opposed to a single SF method, prior, and MET. Top-
down approaches such as this allow us to compare/con-
trast results with developed emission inventories and
quantify emissions in near-real time. Future work more
thoroughly comparing this ensemble SF approach to
inversion as well as mass balance methods would be
of value as these top-down approaches continue to be
employed and further refined.
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