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Abstract. There has been a proliferation of dense observing
systems to monitor greenhouse gas (GHG) concentrations
over the past decade. Estimating emissions with these obser-
vations is often done using an atmospheric transport model to
characterize the source–receptor relationship, which is com-
monly termed the measurement “footprint”. Computing and
storing footprints using full-physics models is becoming ex-
pensive due to the requirement to simulate atmospheric trans-
port at high resolution. We present the development of Foot-
Net, a deep-learning emulator of footprints at the kilome-
ter scale. We train and evaluate the emulator using foot-
prints simulated with a Lagrangian particle dispersion model
(LPDM). FootNet predicts the magnitudes and extents of
footprints in near real time with high fidelity. We identify
the relative importance of input variables of FootNet for im-
proving the interpretability of the model. Surface winds and
a precomputed Gaussian plume from the receptor are identi-
fied as the most important variables for footprint emulation.
The FootNet emulator developed here may help address the
computational bottleneck of flux inversions using dense ob-
servations.

1 Introduction

Monitoring anthropogenic greenhouse gas (GHG) emissions
is important for ensuring the success of the Paris Agree-
ment’s long-term goal of mitigating climate change (IPCC,
2022). To that end, there has been a proliferation of dense
observing systems over the past decade to better track GHG

emissions. Substantial efforts have been made to expand
observation networks to better quantify urban GHG emis-
sions, as the majority of the world’s population lives in ur-
ban areas and the degree of urbanization is projected to in-
crease in the future (United Nations Publications, 2019).
For example, the Northeast Corridor GHG observation net-
work was established to quantify emissions of carbon diox-
ide and methane using tower-based in situ measurements
in urban regions in the northeastern United States (Karion
et al., 2020). The BErkeley Atmospheric CO2 Observation
Network (BEACO2N; Shusterman et al., 2016) utilizes low-
cost sensors to increase the spatial density of measurements,
which could be used to estimate urban emissions on intra-
city scales in the San Francisco (SF) Bay Area. The prolifer-
ation of urban GHG observation networks allows for decadal
analyses of GHG emissions and provides information for im-
proving the efficiency of GHG reduction policies (Mitchell
et al., 2018; Lauvaux et al., 2020). There has been a co-
incident expansion in spaceborne GHG monitoring instru-
ments, which provide similarly dense observations, such as
NASA’s Orbiting Carbon Observatory-2 (OCO-2) and OCO-
3, the TROPOspheric Monitoring Instrument (TROPOMI)
on board the Copernicus Sentinel-5 Precursor (S5P) satel-
lite (Veefkind et al., 2012), MethaneSat for methane, and
a planned constellation of GHG monitoring satellites (e.g.,
GOSAT-GW).

The increased number of observational datasets places
more constraints on estimating GHG emissions. However,
current methods do not scale well with the increasing num-
ber of observations. Inferring GHG emissions using atmo-
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spheric observations is conventionally done via atmospheric
flux inversions (e.g., Jiang et al., 2017; White et al., 2019;
Turner et al., 2020). The state of the art in atmospheric flux
inversions relies on Eulerian models or Lagrangian particle
dispersion models (LPDMs) to simulate atmospheric trans-
port, which provides a means of relating observations to sur-
face fluxes. For example, the four-dimensional variational
(4DVar) method uses the adjoint of Eulerian models to cal-
culate sensitivities of GHG concentrations to surface fluxes
(Baker et al., 2006; Henze et al., 2007; Jiang et al., 2017; Qu
et al., 2022). Kalman filters are also widely used in flux in-
versions, which calculate covariance matrices between prior
fluxes and GHG concentrations simulated by Eulerian mod-
els in order to estimate posterior fluxes (Feng et al., 2009;
Kang et al., 2011; Miyazaki et al., 2017, 2020). Alternatively,
LPDMs can be used to calculate the sensitivity of each ob-
servation to its upwind sources by simulating the trajectories
of an ensemble of particles advected backward in time (Lin
et al., 2004; Fasoli et al., 2018; Jones et al., 2007b; Pisso
et al., 2019). The sensitivity of each receptor to its upwind
sources, termed the receptor’s “footprint”, can then be used
to estimate fluxes inversely (e.g., Stohl et al., 2003, 2009;
Jones et al., 2007a; Lin et al., 2004, 2021; Stein et al.,
2015; Turner et al., 2020). These methods based on full-
physics models are becoming prohibitively expensive due to
the large computational burden of running high-resolution
atmospheric transport models for dense observing systems.
The 4DVar method runs the forward and adjoint models iter-
atively in order to optimize the a posteriori emission, which
is hard to parallelize. Kalman filters could benefit from paral-
lelism. However, they still require the forward model, and the
computational cost scales up with the number of processors
used (e.g., Houtekamer and Mitchell, 2001).

Here we present a machine-learning-based emulator, Foot-
Net, to efficiently calculate footprints of ground-based re-
ceptors with high fidelity at kilometer-scale spatial resolu-
tion. The footprint emulator reduces the computational and
storage cost of Lagrangian model flux inversion systems by
2–3 orders of magnitude, which will better accommodate
the increased number of GHG observations. We show the
evaluation of the performance of FootNet using independent
datasets. Finally, we assess the relative importance of the in-
put variables of FootNet using the permute-and-predict (PaP)
method.

2 Construction of the FootNet emulator

Training of the FootNet model is a supervised learning pro-
cess, which requires ground truth to guide the optimization
of the model parameters. Here, we use a full-physics model
to generate the ground truth. We simulate footprints using
the Stochastic Time-Inverted Lagrangian Transport (STILT)
model (Lin et al., 2003; Fasoli et al., 2018), a Lagrangian par-
ticle dispersion model. STILT simulations are conducted for

two regions: the Barnett Shale region in Texas and the SF Bay
Area in California (see Fig. 2). These two regions are chosen
because one has a simple topography (the Barnett Shale) and
the other is topographically complex (the SF Bay Area). As
such, these regions represent limiting cases for the construc-
tion and evaluation of the emulator. Further, the combination
of the two regions will help prevent overfitting of the model
to a single location. For the SF Bay Area, STILT simulations
are run from 2018 to 2020 with receptors located at realistic
sites deployed in BEACO2N (see http://beacon.berkeley.edu,
last access: 6 March 2025 and Shusterman et al., 2016). Foot-
prints for the Barnett Shale region are generated from a 1-
week WRF-STILT simulation in 2013 (Turner et al., 2018).
All STILT runs are conducted within 400× 400 km2 do-
mains at 1× 1 km2 spatial resolution (see Fig. 1). The foot-
prints are integrated 72 h backwards from the measurement
time because of the 400 km× 400 km domain used by the
FootNet model. The time integration period could change de-
pending on the spatial scales and timescales of the inversion
systems.

The output of FootNet is a source–receptor relationship
(i.e., footprint H), which represents the sensitivity of atmo-
spheric concentrations at a receptor site to emissions upwind
of the receptor. This relationship between the measured con-
centrations and the emissions in the upwind area can be for-
mulated as

y =Hx+ b, (1)

where y is the measured concentration, x is the emission flux
in a domain around the measurement location, and b is the
background concentration upwind of the domain. The units
of y and x can be expressed as dry air mixing ratio (ppb) and
flux rates (nmol m−2 s−1), respectively (Lin et al., 2003). The
source–receptor relationships, H= ∂y/∂x, therefore have a
combined unit (ppb (nmol m−2 s−1)−1).

The calculation of measurement footprints is independent
of the observed gas concentrations and could be performed
using meteorological variables only. As shown in Table 1,
we use four physical parameters from the NOAA High-
Resolution Rapid Refresh (HRRR; Benjamin et al., 2016)
model as the input variables, including the 10 m zonal wind
speed (U10M), 10 m meridional wind speed (V10M), plan-
etary boundary layer height (PBLH), and surface pressure
(PRSS). The FootNet model receives input variables at the
measurement time (t0) and 6 h before the measurement time
(t0− 6 h) to predict footprints at t0. The choice of 6 h back-
wards was determined by a series of sensitivity tests of the
amount of history information in the input data (see Sect. S1
in the Supplement). We found that including history informa-
tion from more than 6 h could not improve the performance
of FootNet further in the emulation (see Figs. S1–S3 in the
Supplement). However, we note that the results from the sen-
sitivity tests could depend on the spatial and temporal scales
and the resolutions of the specific inversion problems. Evalu-
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Figure 1. The top row shows a schematic diagram of the FootNet model. A detailed structure of FootNet is shown at the bottom. The orange
boxes indicate 3× 3 convolutional layers. The red boxes represent 2× 2 max-pooling layers. The light-blue boxes are 2× 2 transposed
convolutional layers. The dark-blue boxes represent the latent vectors concatenated from previous layers (shown as parallel arrows on top).

ation of the necessary history information in other spatiotem-
poral regions is warranted.

We scale the input variables to a similar magnitude for the
stabilization of the training process (see Table 1). The output
of FootNet is measurement footprints and is transformed by
the natural logarithm function to reduce the skewness of the
distribution of footprint values. The transformed footprints
are filtered to remove values smaller than −20 and are then
shifted by +20, corresponding to a scaling of the raw foot-
prints by e20. We find that including Gaussian plumes (see
Fig. 1) in the input variables could significantly improve the
performance of FootNet. The Gaussian plumes are calculated
using the Gaussian plume model (e.g., Stern, 1976; Dobbins,
1979; Zannetti, 1990) with reversed wind fields starting from
the measurement site that are used as the initial guess of the
upwind areas and the measurement footprints. The Gaussian
plumes can be calculated efficiently as a Hadamard product
from the inputs listed above and, as such, add minimal com-
putational expense. The Gaussian plumes also provide a lo-
calization for FootNet in that they contain the information

on the measurement location and provide an initial guess for
the spatial structure of the footprint. The FootNet model is
trained to learn the nonlinear transformation from the ideal-
ized Gaussian plumes and measurement footprints using the
meteorological fields. The input variables are interpolated to
the 400× 400 km2 domain and the 1× 1 km2 spatial resolu-
tion of footprints.

The model structure underlying the footprint emulator is
the U-Net model (Ronneberger et al., 2015), which is now
broadly applied in the field of Earth science (Ghorbanzadeh
et al., 2021; He et al., 2022a, b; Zemskova et al., 2022;
Tucker et al., 2023; He et al., 2024). A schematic diagram
of the model architecture is shown in Fig. 1. The model con-
sists of four convolutional blocks and four up-convolutional
blocks. Each convolutional block is a sequence of two con-
volutional layers with 3× 3 kernels and one 2× 2 max-
pooling layer. In each convolutional layer, the input im-
ages will use the convolution calculation with 3× 3 kernels
that will scan all the images to generate output images. In
max-pooling layers, the input images will be downsampled

https://doi.org/10.5194/gmd-18-1661-2025 Geosci. Model Dev., 18, 1661–1671, 2025



1664 T.-L. He et al.: FootNet v1.0: a machine learning emulator of atmospheric transport

Table 1. Information about the input variables of FootNet.

Variable (unit) Description Time step Scaling factor

Gaussian plume Idealized plumes calculated t0, t0− 6 h 1
using reversed winds

U10M (m s−1) 10 m U component of wind t0, t0− 6 h 10
V10M (m s−1) 10 m V component of wind t0, t0− 6 h 10
PBLH (m) PBL height t0, t0− 6 h 1× 10−3

PRSS (hPa) Surface pressure t0, t0− 6 h 1× 10−3

Figure 2. Locations of receptors for simulations of measurement
footprints using the STILT model. Receptors in the SF Bay Area are
located at sites in BEACO2N (Shusterman et al., 2016). Receptors
in the Barnett Shale region are at locations used in Turner et al.
(2018). The map tiles are from © Stamen Design under a Creative
Commons Attribution (CC BY 3.0) license.

by taking maximum values in each 2× 2 region in the im-
ages. Similarly, each up-convolutional layer has one 2× 2
up-convolutional layer, followed by two 3× 3 convolutional
layers. Up-convolutional layers perform transposed convolu-
tion operations with 2×2 kernels scanning input images. The
outputs from convolutional layers are all transformed by the
rectified linear unit (ReLU) function to increase nonlinearity
in predictions. In the training process, the entries of 3×3 con-
volutional kernels and 2×2 up-convolutional kernels will be
optimized along the partial gradients of a loss function that
measures the difference between the truth and FootNet pre-
dictions. More details about deep-learning architectures can
be found in Goodfellow et al. (2016).

We train and evaluate the emulator using a dataset with
10 000 natural log-transformed footprints (logH) from the
Barnett Shale and 10 000 footprints from the SF Bay Area as
the truth. We apply natural logarithm transformation to the
measurement footprints because their values are often highly
skewed, which could be challenging for the FootNet model
to learn during the training process. The combined dataset is
randomly split into 85 % as the training dataset and 15 % as

the test dataset. The test dataset is independent of the training
process; 15 % of the training dataset is used as a validation
dataset during the training process to prevent overfitting. We
use mean squared error as the loss function and the Adam
optimization algorithm.

We use intersection over union (IoU) to measure the accu-
racy of the area of footprints predicted by FootNet, which is
defined as follows:

IoU=
|Y ∩ Ŷ |

|Y ∪ Ŷ |
. (2)

Here, Y and Ŷ stand for the ground truth (footprints sim-
ulated by STILT) and the FootNet predictions, respectively.
The absolute value bars (|·|) here refer to the area of a region.
Specifically, the intersection, |Y ∩ Ŷ |, calculates the area of
the region where both the truth and FootNet predictions show
nonzero footprints. Similarly, the union, |Y ∪ Ŷ |, represents
the area of the region where either the truth or FootNet pre-
dictions show nonzero footprints. IoU is widely used to eval-
uate the ability of deep-learning models to make accurately
localized predictions. We also compute Pearson correlation
coefficients (r) for footprints in the intersection areas be-
tween the truth, as simulated by STILT, and the correspond-
ing FootNet predictions to help assess the performance.

Ultimately, we are interested in better understanding what
drives the predictions of the FootNet model. As such, we use
the PaP method to calculate the importance of input variables
for footprint emulation, which provides some interpretability
of the FootNet model (Fisher et al., 2019). The PaP method
estimates variable importance by permuting each input vari-
able with different data samples, and the subsequent per-
formance change represents FootNet’s sensitivity to the per-
muted variable. We estimate variable importance by calculat-
ing performance changes in the correlation, the IoU, and the
root mean square error (RMSE) of the predicted footprints.

3 Evaluating the performance of the FootNet emulator

Figure 3 demonstrates the evolution of FootNet predictions
during the training process and the overall performance of
FootNet after the training converges. Figure 3d shows a foot-
print simulated by the STILT model from the test dataset,
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where the footprint is highly nonlinear with a change in di-
rection near the receptor. The corresponding FootNet predic-
tions are shown in Fig. 3a–c. After iteration A (shortly after
the training starts), FootNet predicts measurement footprints
around the receptor with a large negative bias and a low cor-
relation coefficient of 0.49. Iteration B is about halfway in
the training process, after which the FootNet prediction cap-
tures the general shape of the footprint better and the correla-
tion is improved to 0.61. The training stops after iteration C.
The final FootNet prediction has enriched details and attains
a correlation coefficient of 0.75. Compared to the truth in
Fig. 3d, the IoU of FootNet predictions improves from 0.28
after iteration A to 0.51 after iteration B and attains a final
IoU of 0.76 (see Fig. 3e). Figure 3f shows the comparison
between the truth and FootNet predictions for all footprints
in the test dataset. FootNet predictions show a slight neg-
ative bias compared to footprints simulated using the full-
physics STILT model. The overall Pearson correlation coef-
ficient (r) between FootNet predictions and STILT simula-
tions is 0.58. We conclude that FootNet is able to emulate
the source–receptor relationship under both simple (Barnett
Shale, TX) and complex (SF Bay Area, CA) meteorological
conditions with high fidelity. However, it is worth mention-
ing here that we find some performance degradation using an
alternative splitting of the data based on different time peri-
ods. Because the training dataset used to construct version 1
of FootNet has a relatively small size, similarities between
samples are hard to avoid fully by randomly selecting train-
ing data samples, which could lead to generalizability issues
when using FootNet version 1 over regions and time periods
too different from the training dataset. This generalizability
issue could be largely mitigated by increasing the volume of
the training dataset in the future (Dadheech et al., 2024).

We then evaluate the performance of FootNet in predict-
ing individual footprints for the two regions. Figure 4 shows
footprints from STILT and FootNet for the two regions: the
Barnett Shale and the SF Bay Area. Figure 4e shows results
from the simple case (Barnett Shale, TX), where the foot-
print is similar to an idealized Gaussian plume with time-
reversed winds. FootNet captures both the magnitudes and
spatial patterns of the footprint well, with an IoU of 0.73 and
a correlation coefficient of 0.54. Figure 4b and f demonstrate
a more complicated meteorological scenario in the Barnett
Shale region. The IoU metric and correlation coefficient be-
tween the STILT footprint and the FootNet prediction are
0.71 and 0.61, respectively, for this more complex scenario.

Atmospheric transport in the SF Bay Area is decisively
more complex because the region includes steep topography,
air–sea interactions, and numerous valleys and deltas. Fig-
ure 4c and d show results from the full-physics model for the
SF Bay Area. Emulation of footprints in the Bay Area is more
challenging and has an overall degraded fidelity as compared
to the Barnett Shale region. Figure 4c and g show a receptor
with the bulk of the footprint in the northwestern quadrant
of the domain as a result of the typical summertime meteo-

rology of the SF Bay Area, with westerly flow bringing air
masses into the SF Bay Area past the Golden Gate Bridge.
The shape and magnitude of the footprint are predicted by
FootNet with an IoU of 0.53 and a correlation coefficient of
0.83. Figure 4d and h show a more complex meteorological
scenario where the FootNet prediction has an IoU of 0.56 and
a correlation coefficient of 0.78 as compared to STILT.

There have been other methods developed to improve
the efficiency of footprint calculations. For example, Roten
et al. (2021) used nonlinear weighted averaging to inter-
polate footprints from locations near the receptors. Fillola
et al. (2023) developed a similar footprint emulator based on
gradient-boosted regression trees (GBRTs) at a coarse spa-
tial resolution (20–30 km at the middle latitudes) and 10 grid
cells around the measurement location. Compared to pre-
vious work, the FootNet model reproduces the full-physics
model with high fidelity at high resolution. This is remark-
able given that the complex topography and meteorology of
the regions studied here could complicate transport at the
kilometer scale and the emulation of footprints. Moreover,
FootNet only takes meteorological fields and the idealized
Gaussian plume as its inputs. No additional LPDM simula-
tions are needed to generate footprint predictions after the
training process.

Emulation of footprints using the FootNet model brings
co-benefits for computational efficiency and storage cost
and better facilitates the application of LPDM-based flux
inversion systems to dense observing systems. To conduct
kilometer-scale emission inversions using 1 d of observations
made at the 40 BEACO2N sites in the SF Bay Area (approx-
imately 650 observations per day), it takes the full-physics
STILT model about 640 core hours to generate the required
footprints. The generation of each footprint prediction takes
∼ 1 s on a 32-core compute node, which can be reduced fur-
ther to 0.08 s on an NVIDIA A2 graphics processing unit
(GPU). Only 6 min are required for FootNet on an A2 GPU
node to generate the footprints for 1 d of BEACO2N mea-
surements. The storage requirement also makes it impractical
to use full-physics models in high-resolution flux inversions
with dense observations. Hourly footprints for 1 week of
BEACO2N measurements would require 4 TB storage space
for future reuse. With FootNet, footprints could be generated
in near real time, and there is no need to store the computed
footprints.

Figure 5 shows the ranking of variable importance for
FootNet calculated using the PaP method on 1000 randomly
selected data samples. Overall, the most important meteoro-
logical variables are the 10 m wind speeds, which lead to a
0.2–0.3 decrease in correlation, and the IoU drops by 0.1–
0.2 after being permuted. Permuting Gaussian plumes de-
grades the correlation and IoU of FootNet predictions by
0.1 and 0.03, respectively. We find less sensitivity of Foot-
Net predictions to surface pressure and planetary boundary
layer height than other input variables. This is because we
only have training data from two locations in the current ver-
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Figure 3. Convergence of the training process and evaluation of the model performance on the independent test dataset. Footprints are
transformed using the natural logarithm (ppb (nmol m−2 s−1)−1 before the transformation). (a–c) FootNet predictions from three stages in
the training process, corresponding to the truth in panel (d). The blue arrows represent the wind vectors, and the green stars show the locations
of the receptors. (e) Comparison between footprints simulated by STILT and FootNet predictions in panels (a)–(c). (f) Two-dimensional
histogram of all natural log-transformed footprint (logH) values simulated by STILT and the corresponding predictions made by FootNet
from the test dataset.

sion of the model, and these two meteorological fields show
much lower variability than the wind fields in the training
dataset. We still include surface pressure and PBLH as input
variables because they are essential information for the gen-
eration of measurement footprints. We expect to see greater
importance for surface pressure and PBLH in the future for
a general version of FootNet trained using footprints from
more locations. Figure 5 also shows that input variables from
t0− 6 h have consistently greater importance than t0.

The PaP method only provides a rough estimate of variable
importance, and the intercorrelation between input variables
can lead to an inflation of the feature importance (Hooker
et al., 2021). Nevertheless, the estimated variable importance
for FootNet is in alignment with our understanding of the cal-
culation of footprints in a full-physics model, which relies on

the advection of particles driven by precomputed wind fields.
The Gaussian plume is also identified as highly important,
because it is the only input field providing information about
the locations of receptors.

4 Conclusions

We described the development of a machine-learning-based
emulator of surface measurement footprints, FootNet. The
footprint emulator can be used to improve computational ef-
ficiency when estimating high-resolution GHG fluxes using
measurements made by dense observing systems. The Foot-
Net model was trained and evaluated using footprints simu-
lated by the STILT full-physics model for the SF Bay Area
and the Barnett Shale region. We showed the convergence
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Figure 4. Evaluation of individual FootNet predictions from the test dataset. Footprints are transformed using the natural logarithm
(ppb (nmol m−2 s−1)−1 before the transformation). (a–d) Footprints simulated by the full-physics STILT model for the Barnett Shale region
and the SF Bay Area. (e–h) Footprint predictions made by FootNet corresponding to panels (a)–(d). The blue arrows represent the wind
vectors, and the green stars show the locations of the receptors. (i–l) Comparison and correlation between the truth and predictions for the
four examples.
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Figure 5. Rankings of variable importance estimated using the permute-and-predict (PaP) method on 1000 data samples. (a-c) Variable
importance shown as a drop in correlation, a drop in the IoU, and an increase in the RMSE after permuting the 10 input variables. Orange
lines show the medians. Boxes indicate ranges from the first quartiles to the third quartiles. Whiskers are the 1.5 interquartile ranges (IQRs)
from the boxes. Circles are outliers.

of FootNet predictions with the STILT truth as the train-
ing iterates. The overall correlation between FootNet pre-
dictions and the STILT truth in the test dataset reaches 0.58
after full convergence. The emulator predicts both the ex-
tents and magnitudes of footprints well, with high fidelity.
We estimated the importance of input variables using the PaP
method to improve the interpretability of the FootNet model.
We found that 10 m wind speeds and Gaussian plumes have
the greatest importance for the emulation of footprints. Emu-
lation of footprints using FootNet brings co-benefits for com-
putational efficiency and reduced storage cost, which will
make it feasible to deliver high-resolution estimates of GHG
fluxes in near real time using proliferated dense observing
systems in the future.

Due to the computational cost required by the generation
of high-resolution footprints, we only included footprints
generated from previous studies for the two locations in train-
ing version 1.0 of FootNet. We are actively generating new
footprints at 1 km from a broader region in order to further
improve the emulator’s performance, especially in regions
with meteorological conditions different from the two loca-
tions used in this study (Dadheech et al., 2024). Generalizing
this source–receptor emulator to other regions is being tack-
led in the next version of FootNet.

Code and data availability. We use the full-physics STILT model
to simulate footprints for the training of FootNet. The STILT
model can be accessed from https://uataq.github.io/stilt/ (last ac-
cess: 6 March 2025) (Fasoli et al., 2018). Footprints simulated by
the STILT model are available through Turner et al. (2018) and
Turner et al. (2020). Examples of the footprints used in the training
process can be downloaded from https://doi.org/10.5281/zenodo.
12803617 (He, 2024a), https://doi.org/10.5281/zenodo.12803736
(He, 2024b), and https://doi.org/10.5281/zenodo.12803855 (He,
2024c). The meteorological variables are from the HRRR data prod-
uct, which is available at https://rapidrefresh.noaa.gov/hrrr/ (last ac-
cess: 6 March 2025) (Dowell et al., 2022; James et al., 2022). The

repository of the code used in the paper is publicly available at
https://doi.org/10.5281/zenodo.12752655 (He, 2024d).
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