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Global atmospheric methane concentrations rose by 10 to 15 ppb/y in the 1980s
before abruptly slowing to 2 to 8 ppb/y in the early 1990s. This period in the 1990s
is known as the “methane slowdown” and has been attributed in part to the collapse
of the former Soviet Union (USSR) in December 1991, which may have decreased the
methane emissions from oil and gas operations. Here, we develop a methane plume
detection system based on probabilistic deep learning and human-labeled training data.
We use this method to detect methane plumes from Landsat 5 satellite observations
over Turkmenistan from 1986 to 2011. We focus on Turkmenistan because economic
data suggest it could account for half of the decline in oil and gas emissions from the
former USSR. We find an increase in both the frequency of methane plume detections
and the magnitude of methane emissions following the collapse of the USSR. We
estimate a national loss rate from oil and gas infrastructure in Turkmenistan of more
than 10% at times, which suggests the socioeconomic turmoil led to a lack of oversight
and widespread infrastructure failure in the oil and gas sector. Our finding of increased
oil and gas methane emissions from Turkmenistan following the USSR’s collapse casts
doubt on the long-standing hypothesis regarding the methane slowdown, begging the
question: “what drove the 1992 methane slowdown?”

methane | deep learning | remote sensing | plume detection | fossil fuel

Atmospheric methane has exhibited both periods of rapid growth and stabilization since
in situ observations began in the early 1980s. There has been much debate about the
causes of these variations (1–16). One such variation occurred in the early 1990s when
the methane growth rate (d [CH4]/dt) abruptly declined from 10 to 15 ppb/y to 2 to 8
ppb/y in 1992. This change in the methane growth rate is referred to as the “methane
slowdown.” Previous work observed a decline in the inter-polar difference (IPD;
difference between Arctic and Antarctic methane concentrations) that coincided with the
methane slowdown (1, 2, 17). Analysis of stable carbon isotopes of methane (�13C-CH4)
suggested a decline in isotopically heavy sources (4) in the early 1990s, such as oil and gas
(O&G), or an increase in light sources [e.g., wetlands (18, 19)]. Following this, previous
work (1, 2, 4) hypothesized that the collapse of the USSR contributed to the abrupt
change in methane growth rate in 1992 due to a decrease in O&G production, resulting
in lower methane emissions from a high-latitude source. This hypothesis is compatible
with both the constraints from the IPD and �13C-CH4. However, recent work has
shown how the IPD is affected by extra-polar emissions and variations in atmospheric
transport (20), meaning the IPD may not reflect changes in high-latitude sources as
originally hypothesized. Regarding �13C-CH4, there is large overlap in the isotopic source
signatures (6, 21) and, as such, they do not unambiguously constrain fossil fuel sources.
Uncertainties in historical methane emissions from wetlands and the methane sink further
complicate the interpretation (10, 19, 22). Here, we assess the role of the collapse of the
USSR on the methane slowdown in 1992 using historical satellite observations.

Analysis of economic data shows a decline in gas production from former USSR
republics following the collapse (23). This economic data can be used to construct a
“bottom–up” estimate of methane emissions. SI Appendix, Fig. S1 shows the O&G
production data and a bottom–up estimate of methane emissions for the USSR
and Turkmenistan (24). Bottom–up methods predict a decline in methane emissions
from USSR O&G of 1.400 Gg/y between 1992 and 1997. Turkmenistan’s O&G
emissions are predicted to decline by 700 Gg/y. The severe decline in Turkmen gas
production was driven by the decrease and eventual complete cessation of demand
from republics in the former USSR, primarily Ukraine, between 1993 and 1998 (25).
Bottom–up methods attribute half of the decline in USSR O&G methane emissions
to Turkmenistan, suggesting that it was a particularly important contributor to the
methane slowdown in 1992. As such, quantifying historical changes in O&G methane
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emissions in Turkmenistan is crucial for understanding the
drivers of the methane slowdown.

Recent work from Varon et al. (26) demonstrated how land
surface imaging satellites can be used to detect and quantify
methane emissions from large point sources. Briefly, these
satellites have bands in the shortwave infrared (SWIR) that
cover methane absorption features near 1.6 and 2.2 μm. The
high spatial resolution of these land surface imaging satellites
(20–30 m) results in a high signal-to-noise ratio in the vicinity
of large methane point sources. This has been used in a number

of recent studies (26–28) to quantify methane emissions from
O&G operations over the past few years using Landsat 8–9 and
Sentinel-2A/B. Landsat 4–5 were the first in the Landsat series
to include SWIR bands, potentially allowing the quantification
of historical methane plumes. Landsat 5 launched in March 1,
1984, and operated until June 5, 2013. The historical records
from Landsat 4–5 may provide new insights into the drivers of
variations in atmospheric composition over the past half century.

Here, we develop a methane plume detection system based
on an ensemble of deep learning models and trained using
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Fig. 1. Detection of methane plumes in Turkmenistan from 1986 to 2011. (A–C) Fractional differences in SWIR top-of-atmosphere reflectances (dR),
retrieved methane column anomalies, and estimated methane enhancements, respectively, for one of the oldest methane plumes detected in Turkmenistan
from Landsat 5. (D–F ) Same as panels (A–C), but for another methane plume. Dashed plume contours are with low confidence levels and solid contours are for
the high confidence regions. (G) Location of detected methane plumes. (H) Histogram of the methane emissions for the detected plumes.
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human-labeled methane plume masks. This plume detection
system is then applied to the 26-y record from Landsat 5 over
Turkmenistan. We quantify the point source methane emissions
from O&G operations in Turkmenistan before and after the
collapse of the USSR. Through comparison with economic
data, we estimate a national loss rate from O&G operations
in Turkmenistan.

Detection of Methane Sources in Turkmenistan
The 1986 to 2011 Landsat 5 operational period provides data
both before and after the collapse of the USSR. Methane plumes
were detected over Turkmenistan using the ensemble deep-
learning model (Materials and Methods), and emissions (Q) were
quantified using the integrated methane enhancement (IME)
method (26, 29, 30). Fig. 1 shows two examples of methane
plumes detected in Turkmenistan. Plume detections are based,
in part, on the normalized difference in top-of-atmosphere
reflectance in the two SWIR bands (dR), similar to other
normalized difference indices used in land surface imaging work.
We then use a radiative transfer model (26, 30) to determine the
methane column anomalies needed to reproduce the observed
dR. Fig. 1 A and D show the dR; Fig. 1 C and F show the
associated methane column anomalies. The ensemble deep-
learning method allows us to calculate regions of high and low
confidence in the detected plumes, indicated by the contours in
Fig. 1 B and E. We define our high (low) confidence region as
pixels that are classified as a methane plume by more than 75%
(10%) of the deep learning ensemble models. Methane emissions
for the plumes are then computed using the IME method with
the methane anomalies from Landsat 5, plume masks from the
plume detection method, and reanalysis windspeed data from
the ECMWF Reanalysis v5 (31). Application of this method to
automatically detect plumes and quantify emissions with noisy
data from the older series of Landsat instruments (4–5) required
a number of developments (Materials and Methods). To our

knowledge, the methane plume shown in the top row of Fig. 1,
from 1986, is the oldest methane plume ever observed from space.

Fig. 1G shows the location of all detected plumes from Landsat
5. In total, we detected 776 plumes between 1986 and 2011.
Each plume was manually examined after detection to evaluate
the robustness of the methodology and minimize false detections.
Three prominent clusters of plumes can be seen in the southeast,
northeast, and in the west along the Caspian Sea. These regions all
have extensive O&G operations. Many of these regions have been
noted by previous work using instruments on modern satellites:
Sentinel-5P (32), Sentinel-2A/B (28, 33), and Landsat 8 (33).
We observe intermittent plumes along pipelines in the central and
eastern O&G fields in Turkmenistan. To our knowledge, these
are some of the first methane plume detections in these regions.
Fig. 1H shows the statistics of all the detected plumes. The
distribution of methane emissions is lognormally distributed with
a mean (median) emission rate of 10.4 t/h (6.1 t/h). A lognormal
distribution of methane emissions is consistent with previous
work characterizing the distribution of methane emissions from
O&G operations (29, 32, 34) due to the importance of super-
emitters in the methane budget (35). The largest source observed
was 145 ± 36 t/h and the smallest source was 0.6 ± 0.2 t/h,
representing our best estimate of a detection limit.

Persistent Methane Emissions from a Single
Gas Field
Examination of the detected methane plumes shows persistent
methane emissions. Fig. 2 shows methane plumes detected
in a subregion within the Barsagelmez Oil Field (39.391◦N,
53.833◦E) near the Caspian Sea. We first observe methane
plumes in 1987. With the exception of 1986, 1988, 2000,
and 2002, we observe large methane plumes in this subregion
nearly every year data are available. Specifically, we observe
methane plumes emanating from three distinct locations within
this subregion.

53°49'26" 53°50'29"

39
°2

3'
52

"
39

°2
3'

3"

04 Nov. 1990
9.3±6.3 t/hr

1 km

29 July 1992
2.9±3.5 t/hr

1 km

53°49'26" 53°50'29"

01 June 1994
17.6±8.4 t/hr

1 km

53°49'26" 53°50'29"

20 Sept. 1997
13.9±5.7 t/hr

1 km

53°49'26" 53°50'29"

39
°2

3'
52

"
39

°2
3'

3"

30 Apr. 2009
8.0±7.1 t/hr

1 km

53°49'26" 53°50'29"

17 Apr. 2010
23.0±8.9 t/hr

1 km

1990 1995 2000 2005 2010
0

10

20

30

40

50

N
um

be
r 

of
 d

et
ec

tio
ns

0

20

40

60

80

100

P
er

ce
nt

ag
e 

of
 c

le
ar

-s
ky

 im
ag

es

0%

20%

40%

60%

80%

100%

A B C D

G

FE

Fig. 2. Persistent regional methane emissions from the Barsagelmez Oil Field. (A–F ) Example methane plumes from the Barsagelmez Oil Field (39.391◦N,
53.833◦E) from 1986 to 2011. (G) Number of detections (light blue) and percent of clear-sky scenes with detections (orange). The gray-shaded area indicates
years with no Landsat 5 images available on Google Earth Engine due to the decentralized handling and distribution of Landsat 5 datasets.
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Fig. 2G shows the percentage of clear-sky scenes over this
subregion that include a methane plume. Prior to the collapse of
the USSR in 1991, we observe methane plumes in 0 to 20% of
the clear sky scenes between 1986 and 1991. After the collapse,
we observe methane plumes in 80 to 100% of the clear sky scenes
between 1992 and 1999. This sharp increase in the frequency of
plume detections coincides with the decline in Turkmenistan
gas production starting in 1992 (SI Appendix, Fig. S1). From
1994 to 1999, we observe a methane plume in more than 95%
of the clear sky scenes. In other words, we observe 6 y of nearly
continuous methane emissions from a single source. The start
of these continuous methane emissions follows Russia’s refusal
to allow Turkmenistan to pass gas through Russian pipelines to
Europe in 1994 (36, 37). The situation was observed to improve
in 2000 with only a single plume detected between 2000 and
2002. The frequency of plume detections increased again from
30% to 66% from 2008 to 2009 before being mitigated in 2011.
Turkmen gas production declined in 2009 and 2010 due to the
global financial crisis.

We calculated cumulative methane emissions from this subre-
gion within the Barsagelmez Oil Field (SI Appendix, Fig. S7G).
From 1986 to 1992, the cumulative emissions increased at an
average rate of 13.4 Gg per year. Beginning in 1992, when
the persistent source was detected, the cumulative emissions
increased by 80.1 Gg per year through 1999. Ultimately, we
observe 0.73± 0.13 Tg of methane released from this subregion
between 1986 and 2000. There is a data gap from 2002 to
2008 with no Landsat 5 images available due to the decentralized
handling and distribution of historical Landsat datasets (38, 39).
The point sources detected from 2008 to 2011 add an additional
0.09 Tg, resulting in a lower bound on cumulative emissions
of 0.82 ± 0.16 Tg for this subregion from 1986 to 2011 (with
missing data from 2002 to 2007). The total amount of methane

released from the subregion is equivalent to a 0.30-ppb increase
in the steady state atmospheric methane mixing ratio if it were
instantaneously released, using a conversion factor (40) of 2.75
Tg CH4 ppb−1. The contribution to global mean methane
concentrations is disproportionately large for just one subregion,
indicating an important role of persistent point sources in the
methane budget.

National Emission Estimates from
Turkmenistan
Fig. 3A shows the number of methane plume detections over
Turkmenistan during the Landsat 5 observational period from
1986 to 2011. To account for the intermittent sampling and
variations in cloud cover, we define the expected number of
plume detections given perfect sampling as the coverage-adjusted
detections: pC ≡ pL × nI/nL, where pL is the number of plumes
detected annually, nL is the number of clear-sky scenes in a
year, and nI is the number of possible Landsat scenes over
Turkmenistan in a year. Prior to the collapse of the USSR,
we find 800 to 1,000 coverage-adjusted plumes per year (∼2.5
plumes/d). Both the number of detections and the coverage-
adjusted detections increase in 1992 following the collapse of
the USSR with the coverage-adjusted plumes increasing by 29%
to an average of 1,230 plumes per year (3.4 plumes/d) between
1992 and 1999 with a maximum of 1,600 plumes in 1994 (4.4
plumes/d).

Both the number of detected plumes and the coverage-adjusted
plume detections are anti-correlated with the Turkmen natural
gas production. After the USSR collapse, the dry natural gas
production in Turkmenistan declined 77% from 57 billion cubic
meters (BCM) in 1992 to the minimum of 13 BCM in 1998. We
detected 84 methane plumes in Turkmenistan in 1998, the most

B
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Fig. 3. Time series analysis of methane point sources detected in Turkmenistan. (A) Number of detected methane plumes per year (light blue), the EIA dry
natural gas production (23) (orange), and coverage-adjusted number of detections (dark blue). The dashed orange line between 1986 and 1991 indicates dry
natural gas production estimated based on scaling using EDGAR O&G emissions. (B) Estimated annual methane emissions from the point sources (teal) and
estimated national O&G loss rate in Turkmenistan (pink). The gray-shaded area indicates years with no Landsat 5 images available on Google Earth Engine due
to the decentralized handling and distribution of Landsat 5 datasets.
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of any year in the Landsat 5 record, when the Turkmenistan dry
gas production was at a minimum. 1994 marked the maximum
in the coverage-adjusted plume detections and, as mentioned
above, Russia began refusing to allow Turkmenistan to pass gas
through Russian pipelines to other markets in 1994 (25). We
also observe an increase in plume detections in 2009 to 2010.
This increase is coincident with a decline in Turkmen dry gas
production following the global financial crisis in 2008.

One hypothesis for the increase in methane plume detections
in the 1990s is that the socioeconomic decline following the
USSR collapse reduced the frequency of maintenance and
oversight, increasing the methane loss from O&G operations. To
assess this, we calculated methane emissions from each detected
plume and estimated O&G loss rates (methane emitted per dry
gas production) from 1986 to 2011. Extending the analysis from
detected plumes to a national O&G emission estimate requires
three assumptions: i) The statistics of the detected plumes are
consistent with the true plume frequency, ii) the percent of O&G
emissions coming from point sources is invariant, and iii) the
point source emissions covary with national O&G emissions in
Turkmenistan. The first assumption is necessitated by the low
revisit frequency of Landsat 5 (∼3 times per month), meaning
that we do not detect all methane plumes. The latter assumption
is because the detection limit of Landsat 5 precludes observing
methane plumes smaller than 0.5 t/h, meaning there are many
O&G sources we do not detect. Following this, we compute the
coverage-adjusted point source emissions by scaling the annual
methane emissions from detected plumes by the ratio of the
maximum possible Landsat scenes in a year to the number of
clear-sky scenes. This yields an annual estimate for the point
source emissions from Turkmenistan. To account for the sources
below our detection limit, we compare our point source emissions
to a bottom–up inventory prior to the USSR collapse. This allows
us to determine the percent of O&G emissions our method can
detect (SI Appendix). The average emissions from point sources
prior to the collapse was 183.4±22.6 Gg/y, which is∼18% of the
bottom–up O&G emissions for Turkmenistan (24). Our point
source emissions are scaled based on the average ratio between
the bottom–up O&G emissions and the point source emissions
between 1986 and 2000. We compute a lower bound assuming
no scaling (i.e., the observed point source emissions represent
all the O&G emissions) and the upper bound uses the largest
ratio between 1986 and 2000. Finally, we assume the observed
point source emissions covary with the national O&G emissions
in Turkmenistan.

Fig. 3B shows the point source emissions and national gas
loss rate in Turkmenistan over the Landsat 5 observational
period. Point source emissions from O&G in Turkmenistan were
∼180 Gg/y from 1986 to 1991. The emissions nearly triple to
463.2 ± 215.7 Gg/y in 1994 and remain elevated through 1998
before declining to an average of 136.6 ± 43.4 Gg/y from 2000
to 2002, similar to the pre-collapse level. The national loss rate in
Turkmenistan was stable from 1986 to 1991 at 1 to 2%. This loss
rate is consistent with previous estimates of methane loss rates
based on measurements along pipelines in Russia (41, 42) and is
comparable to many O&G basins in the United States (43, 44);
other studies suggest even higher loss rates for the USSR than
observed here (45). The loss rate exhibits a near-step change
increase beginning in 1994 with a maximum of 10% in 1998.
Upper bounds on the loss rate in 1994 and 1998 were 12%
and 17%, respectively. The average loss rate from 1994 to 1998
was 6%, 4 times larger than the average pre-collapse loss rate.
As with the detections, the loss rate is anti-correlated with the
dry gas production throughout the record. We also observe an

increase in the emissions and loss rate following the financial
crisis in 2008.

Implications for the Methane Budget
Our work finds an anti-correlation between the dry gas pro-
duction and methane emissions from O&G operations in
Turkmenistan from 1986 to 2011. While the focus of our analysis
was on Turkmenistan, the work likely has implications for the
broader USSR as bottom–up inventories attribute half of the
change in USSR emissions to Turkmenistan. We observe an
increase in methane plume detections, O&G emissions, and the
loss rate from Turkmenistan O&G in 1992 after the collapse of
the USSR. The two maximum loss rates occur in 1994 and 1998.
These maxima coincide with geopolitical and economic events
during this period of turmoil: Russia began refusing to transmit
Turkmen gas to other markets in 1994 and Turkmenistan’s dry
gas production was at a minimum in 1998. Our results suggest
that the socioeconomic turmoil following the USSR collapse
resulted in widespread infrastructure failure, large methane loss
from O&G operations, and an increase in methane emissions
in the 1990s. Given our findings and the outsized role of
Turkmenistan in the former USSR O&G emissions budget, we
question the previous hypothesis that decreased O&G emissions
from the former USSR contributed to the methane slowdown
in 1992. Our results beg the question “what drove the methane
slowdown in the 1990s?”

Materials and Methods

In this study, we trained an ensemble of deep learning models to detect methane
plumes and predict plume masks from images sampled by Sentinel-2 and
Landsat satellites. All the models are trained using human-annotated plume
masks labeled following the literature. The ensemble is used to search for
historical methane plumes in Landsat 5 datasets over Turkmenistan. The plume
masks predicted by the ensemble are used to quantify methane emission rates
using the IME method. Uncertainties on the estimated flux rates are calculated
and provided.

Deep Learning Model. The deep learning model we use is adapted from
the U-net model, which was originally proposed for biomedical segmentation
problems (46). The U-net model has been recently widely applied in the field
of earth science (47–50). The schematic diagram of the model architecture is
shown in SI Appendix, Fig. S2. The U-net model is an encoder–decoder and is
constructed based on the convolutional neural networks (CNN) (51). The first half
of the model is an encoder, in which the vectors of input information are filtered
by two-dimensional kernels in each convolutional layer and the dimensions of
the intermediate outputs (also called latent vectors) are reduced by max-pooling
layers. The second half of the model is a decoder that up-samples the compressed
latent vectors to the model output layer. The up-sampling process is done via
convolutional layers and transposed convolutional layers. During the training
process, the model predictions are compared against the ground truth, and
the differences between the truth and model predictions are used to calculate
partial gradients to optimize the convolutional kernels in the model. Compared
to the classic U-net model, we replaced the encoder half with the ResNeXt-50
model, which is a more efficient model to extract patterns from images (52). We
applied transfer learning by using the pre-trained ResNeXt-50 model weights
before each training process to boost the convergence of training and improve
final model performance.

Input and Output Variables. Methane absorbs strongly around the 1.6 and
2.2 μm bands in the SWIR, which is measured by Landsat 4–9 and Sentinel-
2A/B satellites. We hereafter denote the measured reflectance in the 1.6 and
2.2 μm bands asR11 andR12, respectively, following the Sentinel-2 convention.
Following the Multi-Band-Single-Pass method (26), we define the following
quantity, dR, to capture methane enhancements:

PNAS 2024 Vol. 121 No. 12 e2314600121 https://doi.org/10.1073/pnas.2314600121 5 of 7

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
U

N
IV

E
R

SI
T

Y
 O

F 
W

A
SH

IN
G

T
O

N
 L

IB
R

A
R

IE
S,

 A
R

C
S 

- 
SE

R
IA

L
S"

 o
n 

M
ar

ch
 1

2,
 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

20
5.

17
5.

10
6.

29
.

https://www.pnas.org/lookup/doi/10.1073/pnas.2314600121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2314600121#supplementary-materials


dR =
cR12 − R11

R11
,

where c denotes the scaling factor to account for the overall brightness difference
betweenthetwobands.ThedRquantitycouldbeusedfor theretrievalofmethane
concentrations by fitting a radiative transfer model (26, 53).

The input variables for the deep learning model includedR, an estimate of the
backgrounddR, the gray-scale RGB image, the normalized difference vegetation
index (NDVI), and two ΔdR fields representing differences between dR and the
background dR. NDVI is a classic remote sensing index capturing vegetation on
land surface, which is defined as follows:

NDVI =
RNIR − Rred
RNIR + Rred

.

Here, RNIR and Rred denote the measured reflectance in the near-infrared (NIR)
and red bands. The background dR is estimated by averaging dR with structural
similarity indices (SSIM) higher than 0.5 within±180 d from the target scene.
SSIM is a metric used frequently in computer vision to measure the similarity
between two images, which accounts for image texture and is indicative of the
perceived similarity. SSIM is defined by the following equation:

SSIM =
(2�x�y + (k1L)

2)(2�xy + (k2L)
2)

(�2
x + �2

y + (k1L)2)(�2
x + �2

y + (k2L)2)
,

where �i and �i stand for the mean and SD of the pixels of the corresponding
images, respectively.�xy is the covariance between the two images. k1 = 0.01,

k2 = 0.03, and L = 2bits px
−1
− 1 are variables for the stabilization of the

index. The first ΔdR field, ΔdR1, is defined by the following equation:

ΔdR1 = Z(dR− c′dRbg),

where c′ adjusts the brightness difference between the target scene and the
background scene, and Z stands for the standard score calculation. The second
ΔdR field,ΔdR2, is the Z-score of the difference between dR of the target scene
and the raw background dR.

Theoutputof thedeeplearningmodel isbinarymasksofmethaneplumes.We
use human-annotated plume masks, following the literature, using a customized
graphical user interface (GUI). SI Appendix, Fig. S3 shows the panel of the
GUI. Each methane plume was annotated by more than one person, which is
helpful for preventing overfitting data from a single labeler. The data labeling
was done following the literature about reported recent detected methane
plumes. Overall, we labeled 663 methane plumes as the positive dataset, and
we labeled 969 satellite scenes without any plumes as the negative dataset.
These numbers are low for data-driven methods, so we applied augmentation
steps to increase the volume of training dataset. As shown in SI Appendix,
Fig. S4, the augmentation steps include 90◦ rotation, horizontal and vertical flip,
and addition of 10% Gaussian noise. These augmentation steps are randomly
applied for each augmented data sample. We add 10% Gaussian noise to
improve the robustness of deep learning models against the noise in Landsat 5
datasets. As shown in SI Appendix, Fig. S6, the final training set contains 3,313
positive samples and 4,831 negative samples after the augmentation process.

Training Details and Construction of the Ensemble. The loss function we
use during the training process is a multi-term loss, which is defined as follows:

L = −
∑
i

(yi ln ŷi + (1− yi) ln(1− ŷi))) + (1−
2|Y ∩ Ŷ|

|Y|+ |Ŷ|
).

Here, yi and ŷi represent true labels and predicted labels for each pixel,
respectively. Y and Ŷ stand for the whole set of true labels and predicted
labels, respectively. The first term is the binary cross-entropy (BCE) loss, which is
popularly used in binary classification problems and is derived by maximizing
the likelihood of correctly predicting the binary labels. The second term is the loss
from the Dice score. The Dice score calculates the fraction of the overlap between
the two sets of true labels and predicted labels over both sets, which measures

the overall correctness of mask segmentation. We use the Adam optimization
algorithm for the convergence of the training. Training of deep learning model
is conducted using NVIDIA A2 Tensor Core GPUs.

Instead of one model, we trained 20 realizations of the deep learning
model. The application of ensemble of deep learning models is useful for
the quantification of uncertainties in the predicted methane plume masks (54).
As shown in the schematic diagram in SI Appendix, Fig. S5, each deep learning
model is trained using a subset of the training dataset. During the training
of each ensemble member, the hyper-parameters associated with training
are randomly perturbed. Details about the hyper-parameters are shown in
SI Appendix, Table S1.

Quantification of Methane Emission Rates and Uncertainty. We use
the IME method to quantify emission rates of the detected methane point
sources (30) and the uncertainties. The flux rate of a point source could be
estimated using the following equation:

Q =
Ueff
L

N∑
j=1

ΔjAj,

where Ueff is the effective wind speed, L is the plume size, Δj represents the
methane enhancement in each pixel, and Aj stands for the area of pixels. We
estimate L to be square root of the area of the plume mask. The effective wind
speed is calculated using the empirical relationship between Ueff and 10-m
wind speed (26):

Ueff = �U10m + � ,
where � = 0.33 and � = 0.45ms−1.

The uncertainty on Q is estimated using the following equation:

�Q '

√√√√√(Q�Ueff
Ueff

)2
+

(
Q�L
L

)2
+

Ueff �Δj

L

N∑
j=1

Aj

2

.

To propagate the uncertainty on Q, we use an absolute error of 2 m/s for U10m
and a 20% uncertainty on the plume size

(∑
j Aj
)

. For the uncertainty on pixel-
wise methane enhancement, we estimate �Δj to be the SE calculated using
all pixels outside the plume mask.

We acknowledge that there could exist additional uncertainties in Landsat
5 reflectance measurements. For example, land surface changes could lead to
changesinsurfacealbedoandroughness.Higherreflectancescouldleadtolarger
dRfields, causing positive biases in the estimated methane emissions. However,
the biases have minor magnitudes as compared to methane enhancements
caused by plumes from point sources. The impact of land surface-caused biases
is also mitigated by our method of estimating background methane fields by
averaging satellite scenes with a±180 d time window.

Data, Materials, and Software Availability. The deep learning model was
implemented using PyTorch (https://pytorch.org/). The code to reproduce results
in this paper is available at https://doi.org/10.5281/zenodo.10491722. The list
of detected plumes, the human-labeled plume masks, the optimized model
weights for the ensemble system, methane retrievals, and plume masks
have been deposited in the Dryad Data Repository (https://doi.org/10.5061/
dryad.4mw6m90hp) (55). The methane plume annotation tool is deposited
and available at https://doi.org/10.5281/zenodo.10064968. The annotation of
methane plumes involves multispectral top-of-atmosphere (TOA) reflectance
measurements from Landsat 8 and Sentinel-2, which are available publicly
from Google Earth Engine (GEE, https://developers.google.com/earth-engine/
datasets). Landsat 5 TOA reflectance measurements are also from Google Earth
Engine, which can be accessed using the GEE Python API (https://developers.
google.com/earth-engine/tutorials/community/intro-to-python-api). Dry natu-
ral gas production data could be accessed from the U.S. Energy Infor-
mation Administration (EIA) website (https://www.eia.gov/international/data/
country/TKM/natural-gas/dry-natural-gas-production). The Emissions Database
for Global Atmospheric Research (EDGAR) version 7.0 GHG emission inventory
could be accessed from: https://edgar.jrc.ec.europa.eu/dataset_ghg70.
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