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ABSTRACT: Transportation emissions are the largest individual sector of greenhouse
gas (GHG) emissions. As such, reducing transportation-related emissions is a primary
element of every policy plan to reduce GHG emissions. The Berkeley Environmental
Air-quality and CO2 Observation Network (BEACO2N) was designed and deployed
with the goal of tracking changes in urban CO2 emissions with high spatial (∼1 km)
and temporal (∼1 hr) resolutions while allowing the identification of trends in
individual emission sectors. Here, we describe an approach to inferring vehicular CO2
emissions with sufficient precision to constrain annual trends. Measurements from 26
individual BEACO2N sites are combined and synthesized within the framework of a
Gaussian plume model. After removing signals from biogenic emissions, we are able to
report normalized annual emissions for 2018−2020. A reduction of 7.6 ± 3.5% in
vehicular CO2 emissions is inferred for the San Francisco Bay Area over this 2 year
period. This result overlaps with, but is slightly larger than, estimates from the 2017
version of the California Air Resources Board EMFAC emissions model, which predicts a 4.7% decrease over these 2 years. This
demonstrates the feasibility of independently and rapidly verifying policy-driven reductions in GHG emissions from transportation
with atmospheric observations in cities.
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1. INTRODUCTION

In 2006, California passed Assembly Bill 32 (AB 32), the
Global Warming Solutions Act, which requires the state to
reduce its greenhouse gas (GHG) emissions by 40% of 1990
emissions by the year 2030. Transportation emissions are the
largest individual sector of GHG emissions, and California
aims to limit GHG emissions in this sector to 103−111
MMTCO2e by 2030.1 In 2017, transportation emissions were
170 MMTCO2e.

2 If the reduction occurs linearly, meeting this
goal would require a 3% yr−1 decrease. On a regional scale, the
Bay Area Air Quality Management District is a nine-county
intergovernmental agency with the local authority to support
and track progress toward the state’s goals. Its stated plans to
reduce transportation GHG emissions include a transition to
lower GHG emissions while maintaining an economically
mobile workforce with action items that include supporting the
transition from current vehicle technologies to zero and low
GHG emission vehicles, expanding use of mass transit systems,
and reducing vehicle miles traveled.3

Our understanding of urban CO2 emissions currently relies
most heavily on a combination of methods based on
socioeconomic data and process-level data for individual
activities. For example, measurements of the fuel efficiency of
a wide suite of individual vehicle types are combined with
socioeconomic data about the location of driving, total
distance traveled, and the types of vehicles on different roads
to estimate total vehicular CO2 emissions. Another example is

relocating regional fuel consumption data using socioeconomic
data, converting fuel sales volume to an equivalent mass rate of
CO2 emissions. The mixture of methods and data sources
makes it difficult to quantify the uncertainties in such
estimates. One study rigorously evaluating local scale emission
models showed that the uncertainty of total emissions and the
contribution of individual source sectors to that total is too
large to evaluate the effectiveness of the policy related to urban
CO2 emission reduction.4

Inferring emissions from the observations of atmospheric
CO2 and other GHGs are a direct method for understanding
urban GHG emissions with different uncertainties from
approaches based on economic data. To date, most projects
using ambient observations have focused on demonstrating the
capability of using observations to estimate emissions for a
moment in time (or a year). For example, aircraft mass balance
measurements were used to estimate total emissions from
Indianapolis in 2014 by making observations upwind and
downwind of the city and providing an estimate of emissions
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from the city on the days of those flights.5,6 A few studies have
looked at interannual trends. Newman et al. (2016),7 for
example, looked at trends from 2006−2013 and reported a
10% decrease in fossil fuel CO2 during the 2008 recession.
More sophisticated syntheses of prior emission estimates,
observations, and meteorological models have been used in
ways that optimize the emission model and provide longer-
term emission estimates.8−11 Most of the studies mentioned
above typically consist of 2−15 observing sites with state-of-
the-art instruments that are calibrated frequently with
gravimetric gas standards. These approaches are labor-
intensive.
The Berkeley Environmental Air-quality and CO2 Observa-

tion Network (BEACO2N)
12−15 is designed to observe and

map short- and long-term variation in both GHG and air
quality emissions. The BEACO2N observing system is
designed to produce maps of urban air with ∼2 km pointwise
spatial resolution while minimizing both capital and operating
costs. Nodes in the network include measurements of CO2,
CO, NO2, NO, O3, and aerosol. The measurement system
aims to provide detailed maps of concentration variations
within a city, offering a direct response to concerns about
environmental justice and equity in emission reductions,
especially those that affect both CO2 and related air quality
emissions such as CO, NOx, and aerosol. The current network
includes about 45 nodes in the San Francisco Bay Area, 12
nodes in Los Angeles, and 12 (soon to be 20) nodes in
Glasgow, Scotland. Among our goals in establishing and
maintaining these networks is to enable an understanding of
trends and the reporting to policy makers about the extent to
which the policy tools they are implementing are having the
intended effects on both GHG and air quality emissions.
The advantages of a dense network such as the BEACO2N

were evaluated by comparing the relative abilities of instru-
ments of roughly equal capital investmentthree state-of-the-
art instruments versus 25 BEACO2N-like nodes (the number
of BEACO2N nodes that were installed in 2016)as
constraints on an inverse model.16 The BEACO2N-like system
outperformed the alternative for characterizing a point, line, or
area source within an urban region. In a first effort to describe
changes in emissions over time with the BEACO2N, the
network observations have been combined with a formal
inverse model to deliver an estimate of total CO2 reductions in
a region of the San Francisco Bay Area during the COVID-19
shelter-in-place.17 The observation/modeling system was able
to allocate those reductions on a map with ∼1 km of fidelity.
In addition to this sophisticated and computationally

intensive inverse modeling approach, it is advantageous to
explore simpler methods of analysis. The ability of the
BEACO2N to constrain policy-relevant trends in highway
traffic emissions has been previously demonstrated using a
multiple linear regression method to decompose CO2 signals
into emissions from vehicles and the influence of meteorol-
ogy.15 That paper underscored that each individual site in the
BEACO2N carries information about emissions on the
highways. Here, we present an advance on this approach.
Sites in the network are combined within the framework of a
Gaussian plume model to yield higher signal-to-noise and
constraints on annual trends in urban CO2 emissions from the
vehicle sector.

2. MATERIALS AND METHODS

2.1. Measurements. We use a high-density observing
system, the BEACO2N, that was designed and deployed with
the goal of tracking changes in urban CO2 emissions with ∼1
km spatial resolution and a time resolution of ∼1 hr. A detailed
description of the design and deployment of the BEACO2N
can be found elsewhere13−15 and in the Supporting
Information, Section 1. The raw 5 s CO2 concentration at
each node was processed into calibrated, bias-corrected, dry-air
mole fractions using in-node temperature, pressure, and
relative humidity observations and in-network reference
measurements and averaged to hourly means as described in
Shusterman et al. (2016),14 including the extensive character-
ization of temperature-dependent instrument responses
described in Delaria et al. (2021).12 The precision of the
hourly observations is estimated to be ±0.5 ppm and the
accuracy of 1−2 ppm.12,14,15 We utilize CO2 observations from
26 San Francisco Bay Area sites that were active for at least 3
months between January 2018 and December 2020 (see
Figures 1 and 2).

Traffic information is available through the Caltrans
Performance Measurement System (PeMS; http://pems.dot.
ca.gov), operated by the California Department of Trans-
portation. Hourly vehicle flow and vehicle speed data from the
monitors at highway locations upwind and closest to the
relevant BEACO2N sites are collected and summed across all
the lanes and directions. Data reported by Caltrans is often
filled with model output when observations are not reported
by the sensors. Only the hours with more than 50% directly
measured were used to exclude those moments that are almost
entirely traffic model. Because the emission rate of an
individual vehicle varies with speed, we focus here on the
most common mode of traffic and include only those times
when the average vehicle speed was faster than 30 mph.
Reduced traffic demand in 2020 due to the COVID shutdown
led to more total time at speeds >30 mph, particularly during
rush hours.

2.2. Gaussian Plume Method. The concentration
enhancement for CO2, Cenh(x, z) [kg CO2 m

−3], at a distance

Figure 1. Map of the San Francisco Bay Area showing the BEACO2N
node locations used in this study.
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x and height z, within a Gaussian plume flowing from an
infinite line source oriented along the y axis (e.g., a highway), is
expressed as eq 1, which is an integration of the Gaussian
plume model for a point source along a line source
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The derivation assumes reflection at the surface. The line
source is taken to be at a height H [m]. Q [kg CO2 m

−1 s−1] is
the emission rate along the highway, U [m s−1] is the wind
speed perpendicular to the highway, and the dispersion
parameter σz(x) [m] is the standard deviation of the
concentration distributed in the z direction at the location x.
We simplify this expression by approximating highways in

the San Francisco Bay Area as infinite line sources on the
ground (H = 0), as most of the highways referred to in this
study are not elevated
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BEACO2N sites are treated as if they are on the ground (z =
0), as BEACO2N nodes used in this study are located less than
10 m above the ground. These small differences from z = 0 are
inconsequential for most of the BEACO2N sites used in this
study (see Supporting Information Section 2). The emission
rate Q [kg CO2 m

−1 s−1] of the highway line source can be
expressed as a product of the emission rate of the average

vehicle q [kg CO2 m
−1 per vehicle] and the observed flow rate

of vehicles (VPS, in vehicles per second)

Q q VPS= × (3)

Based on the assumptions mentioned above, we can
rearrange eq 2 to show the ratio of Cenh(x) divided by VPS
as a function of emissions (q)

C x q
x U

( )
VPS

2
2 ( )z

enh

π σ
=

× × (4)

Gaussian plume models applied to urban emissions
commonly use an empirically parameterized dispersion
parameter σz(x). Choi et al. (2014)18 evaluated several
semiempirical choices for connecting meteorological parame-
ters to plume properties. In their analysis, Q and dispersion
coefficients were free variables determined by fitting a
Gaussian expression to observed concentrations at locations
downwind of a line source. They found the dispersion
coefficients to be dependent on temperature, wind speed,
and wind direction under stable nocturnal conditions. We
adopt a similar approach to explain the daily variation of
dispersion. We parameterize σz(x) with Briggs’ expression19 as
in eq 5 (see Supporting Information Section 4 for more
details) and set α and β as free variables.

x
x

x
( )

1zσ α
β

=
+ (5)

Combining eqs 4 and 5 yields

C x
U

q x
x

( )
VPS

2
2

1 1enh

π α
β= +

(6)

Figure 2. Observation of (a) CO2 from all the BEACO2N sites used in this study and the (b) wind at the RFS supersite. Different colors indicate
different BEACO2N sites, and the black line represents the background CO2 in the top panel. Network average of (c) biogenic CO2 enhancement
from the HRRR-STILT model combined with biogenic fluxes, and the (d) PBLH from the ECMWF ERA5 model.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.1c06828
Environ. Sci. Technol. 2022, 56, 3925−3931

3927

https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c06828/suppl_file/es1c06828_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c06828/suppl_file/es1c06828_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c06828?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c06828?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c06828?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c06828?fig=fig2&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.1c06828?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The dimensionless dispersion coefficients α and β determine
the shape of the decaying plume. α has a dominant effect close
to the highway and the importance of β increases at long
distance. We use the wind speed as measured at the RFS
supersite (see Figure 2).
This leaves us with two unknowns: q/α and β in eq 6. To

solve for the unknowns, we begin by recalling the strong
correlation of Cenh(x) and VPS throughout the BEACO2N
domain as described by Shusterman et al. (2018).15 The slope
of the linear regression between Cenh(x) and VPS was observed
to vary and to be steeper near the highway than at sites remote
from the highway. Here, we fit Cenh(x) versus VPS at all the

distances, x, from the highway to derive the slope x( )C
VPS

enh (see

Figure 3). Then, we fit x( )C
VPS

enh vs x to eq 6, deriving q/α and β

from the fit.

In this analysis, the local enhancement, Cenh(x), is defined as
the total enhancement of CO2 at each location above a single
network-wide background. The background is defined as the 3
day running mean of the lowest fifth percentile of BEACO2N
observations at all the nodes in the network. In the BEACO2N
domain, the 3 day running mean represents the background
concentration without a diurnal cycle and includes some
synoptic variation and seasonal variation. As the wind is

dominantly blowing from the ocean (see Figure 2) and there is
little land between the network and the coast, this background
is little influenced by the local biosphere.
A critical element of this analysis is reducing the uncertainty

in the annual emissions estimate by reducing the uncertainty in
the response of local CO2 enhancement to traffic emissions
and dispersion coefficients. The local CO2 enhancement is also
affected by emissions from other anthropogenic sources and
both emissions from and uptake into the urban biosphere.
Anthropogenic sources are dominant in the region, with traffic
and point sources, including industrial and energy sectors,
contributing 41% and 40%, respectively.3 Point sources are
thought to operate 24/7 with no diurnal variation in their

emissions. Deriving the slope x( )C
VPS

enh removes most of the

influence of these other sources, which exhibit different daily
temporal variations from traffic emissions. However, biogenic
emissions are anticorrelated with traffic emissions. The
biogenic fluxes are positive at night due to respiration and
negative during the day, representing photosynthesis. In order
to partially mitigate the portion of the local biospheric
influence that is anticorrelated with traffic, CO2 emissions
and uptake from the biosphere are predicted and subtracted
from the total CO2 enhancement (see Figure 2 and Supporting
Information Section 3).
The dispersion parameter σz(x) and thus the associated

parameters α and β are known to depend on atmospheric
stability classes with different wind speeds, radiation, cloud
cover, and planetary boundary layer height (PBLH). We focus
on the main driver of observed variation, the PBLH. Estimates
of the PBLH (see Figure 2) are taken from the 0.25° by 0.25°
resolution ECMWF ERA5 model.20 We perform a separate
analysis at 20 quantiles of the reanalysis PBLH using the
averaged wind speed for each of these intervals as the value for
U to fit eq 6. The effect of the PBLH variation on the
dispersion parameter σz(x) and thus the associated parameters
α and β is further discussed in the Supporting Information,
Section 4.
The relationship between the response of local CO2

enhancement to traffic emissions and the PBLH is shown in
Figure 4. The figure shows a normalized sensitivity where all
the values are a ratio of the CO2 enhancement/vehicle/s at a
specific PBLH and location to the value for that same quantity
at a PBLH between 100 and 215 m at that same site. The slope

Figure 3. Example of derivation of the slope x( )C
VPS

enh . The red points

indicate the median CO2 enhancement observed in each 0.5 vehicles
s−1 traffic flow increment; the black solid line indicates the linear
regression through the binned medians.

Figure 4. Sensitivity of the local CO2 enhancement (C) to the number of vehicles (VPS) versus PBLH. The data are normalized by the value at the
PBLH between 100 and 215 m of each site. The median of all the sites in the network is indicated with the circle, and the whiskers represent the 1σ
variance. A fit using an exponential function (Equation 7) is shown (black line).
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of the CO2 enhancement with vehicle flow decreases at higher
PBLH. The higher PBLH is also correlated with higher wind
speeds and larger dispersion coefficients. The observed
relationship between local CO2 enhancement, vehicle flow,
and the PBLH can be described with an exponential function,
eq 7

C
x

C
x

VPS
( , PBLH)/

VPS
( , 100 215 m)

(1.644e 0.2075)

enh enh

0.004772 PBLH

−

= +− × (7)

We find a remarkably strong correspondence between the
observed and predicted Cenh/VPS. Equation 7 explains 92% of
the variability, and the prediction fits most observations to
within the uncertainty. Although it is possible that some
meteorological effect other than the PBLH is driving the
variability we observe, our analysis suggests those terms are
correlated with the PBLH, and thus it is sensible to use the
PBLH as the effective controlling parameter in the analysis.

Taking the ratio of the slope x( , PBLH)C
VPS

enh and eq 7 yields

the sensitivity of the local CO2 enhancement to vehicle
emissions at any PBLH to the reference PBLH of 100−215 m.
These values over the full range of the PBLH are then
combined at each site, and the different sites are arranged as a
function of distance from the nearest highway line source (see

Figure 5). Then, we fit x( , 100 215 m)C
VPS

enh − vs x to eq 6 and

find q/α and β.

3. RESULTS AND DISCUSSION
The relationship between CO2 concentration and highway
traffic flow is coherent throughout the network, and the
influence follows a quantitative relationship consistent with
Gaussian dispersion: near highway sites respond strongly to
the highway and distant ones, less so (see Figure 5). We first fit
the observations with q/α and β as free variables. Analyzing the
data from 2018 through 2020 simultaneously yields a value for
q/α of 2006 10−6 kg CO2 m

−1 per vehicle and β of 0.0052 ±
0.0020, respectively. α is expected to lie in the range ∼0.05 and
∼0.2 based on the relationship between α and β found by Choi
et al. (2014)18 and our determination of β = 0.0052 in the
BEACO2N domain. The relationship between α and β found
by Choi et al. applies to geometries where the sampling
transect is higher than or lower than the highway. The

BEACO2N nodes are both above (α = 0.05) and below (α =
0.2) the relevant highways. Assuming a value for α that spans
that range, q is estimated to be 100−400 10−6 kg CO2 m

−1 per
vehicle. The mobile emission rate predicted using the 2017
version of the California Air Resources Board (CARB)
EMFAC model21 is 227 10−6 kg CO2 m−1 per vehicle for
on-road traffic from 2018 through 2020. Although our estimate
is consistent, the uncertainty due to our inability to narrow the
range of α is large. However, α and β are expected to be
constant over time. Analyzing the 3 years of observations
separately, we find β of 0.0041 ± 0.0017, 0.0079 ± 0.0050, and
0.0052 ± 0.0016 for 2018, 2019, and 2020, respectively.
Because the difference between the 3 years is insignificant, we
fix β to be 0.0052 as derived from the combined analysis of all
the 3 years. This constant β induces constant α according to
the relationship between α and β described by Choi et al.
(2014).18 Assuming a constant value for α, we derive
normalized emissions relative to 2018 by taking the ratio of
q/α for each year and comparing to the q/α of 2018.
Figure 6 shows these BEACO2N-derived normalized

emission rates for 2018, 2019, and 2020 and compares them
to normalized predictions from the CARB EMFAC 2017

Figure 5. Sensitivity of the local enhancement of CO2 (C) to vehicle flow (VPS) versus distance from the highway (m) at the PBLH 100−215 m
from 2018 through 2020. The median over the range of the PBLH at each site is the circle, and the whiskers represent the 1σ variance. A fit to the
decay of C/VPS versus distance using a Gaussian plume model (eq 5) with q/α = 2006 (in 10−6 kg CO2 m

−1 per vehicle) and β = 0.0052 is shown
in the black line.

Figure 6. Emission rate per vehicle derived in this study and
estimated from the CARB EMFAC 2017 model. Each year is
normalized to 2018. The whiskers represent the 1σ uncertainty.
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model. From the observations, we infer a 7.6 ± 3.5% reduction
in the CO2 emission rate per vehicle from 2018 to 2020 (two-
sample t-test, p-value<0.001). Uncertainties in the 2019 year
are large because the data available for the analysis was small
that year (see Table 1). Despite the larger noise, the

normalized value for 2019 is intermediate between 2018 and
2020 and consistent with the overall trend. The trend is also
consistent, within the uncertainty bounds, of the slightly
smaller 4.7% reduction for 2018 through 2020 estimated from
the CARB EMFAC 2017 model. Considering the fact that
vehicle miles traveled (VMT) increased by 1% between 2018
and 2019,22 this observational estimate of fuel efficiency
suggests the State of California’s goal of 3%/year decrease in
mobile emissions is being achieved on-road. In 2020, VMT
decreased by 14.5% due to the shelter-in-place order in
California. Combining this reduction with the improved fuel
efficiency that we infer from the observations indicates that an
18% decrease in annual mobile emissions compared to the
previous year occurred in 2020.
In this analysis, we demonstrate an approach to combining a

large number of densely spaced observations with a Gaussian
plume model for quantifying annual trends in vehicular CO2
emission rates. The approach is not computationally
demanding and could easily be adapted to other gases (e.g.,
CO, NOx, and primary aerosol). Elements needed for the
success of this approach include a dense network with near
highway observations, measurements or models of meteoro-
logical parameters, and measurements of traffic flow. Not
surprisingly, the high uptime of the observations, including a
larger number of locations sites and increased data availability
at each site, improves the precision of the analysis. The higher
signal-to-noise ratio of 2020 compared to 2019 reinforces that
point. A concerted effort during the 2020 year led to a
substantial increase in data, despite the challenges of
instrument maintenance during the pandemic. The results
are also more precise when we separate distinct meteorological
periods. Here, we use the PBLH as a surrogate for that
variation. In addition, because of covariance between traffic
flow and biogenic emissions and uptake, estimating the signal
from biogenic emissions and removing them prior to the
attribution of a traffic signal improves the signal-to-noise ratio.
The analysis here provides guidance for understanding the

changing landscape of vehicle CO2 emissions. Additional
analyses will be needed to establish whether it is because of
increased purchases of electric vehicles or increases in the use

of more fuel-efficient gasoline vehicles. The analysis of vehicle
CO2 efficiency trends in multiple cities will also help to
understand whether improvements are uniform or accelerated
by local policies. The BEACO2Ns with 12−25 nodes have
recently been installed in Los Angeles, CA and Glasgow,
Scotland, offering the opportunity to compare with the
changes we infer from the San Fransisco Bay Area network.
We look forward to comparable analyses for other gases and
aerosols emitted by traffic and to other new approaches to
interpreting observations from dense networks such as the
BEACO2N or the much denser Purple Air.
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Table 1. Derived q,a 1σ Uncertainty, and Data Reliability
Statistics for Each Year

2018 2019 2020

before
removing
biogenic
CO2

emission rate
(10−6 kg CO2 m

−1 per veh.)
283 360 264

1σ uncertainty (%) 6.7 7.1 8.1
after
removing
biogenic
CO2

emission rate
(10−6 kg CO2 m

−1 per veh.)
298 281 275

1σ uncertainty (%) 5.4 9.4 3.9
data reliability
statistics

number of sites 15 14 17

average days of data availability 168 100 278
aq is calculated from q/α assuming 0.15 for α.
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