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ABSTRACT: Urban air pollution can vary sharply in space and time. However,
few monitoring strategies can concurrently resolve spatial and temporal variation at
fine scales. Here, we present a new measurement-driven spatiotemporal modeling
approach that transcends the individual limitations of two complementary
sampling paradigms: mobile monitoring and fixed-site sensor networks. We
develop, validate, and apply this model to predict black carbon (BC) using data
from an intensive, 100-day field study in West Oakland, CA. Our spatiotemporal
model exploits coherent spatial patterns derived from a multipollutant mobile
monitoring campaign to fill spatial gaps in time-complete BC data from a low-cost
sensor network. Our model performs well in reconstructing patterns at fine spatial
and temporal resolution (30 m, 15 min), demonstrating strong out-of-sample correlations for both mobile (Pearson’s R ∼ 0.77) and
fixed-site measurements (R ∼ 0.95) while revealing features that are not effectively captured by a single monitoring approach in
isolation. The model reveals sharp concentration gradients near major emission sources while capturing their temporal variability,
offering valuable insights into pollution sources and dynamics.
KEYWORDS: black carbon, spatiotemporal modeling, mobile monitoring, low-cost sensors, hyperlocal, urban air quality

1. INTRODUCTION
Air pollution adversely impacts public health and the
environment.1−3 Owing to the interplay of atmospheric
dynamics and unevenly distributed sources, air pollution can
vary sharply in space and time.4−8 While conventional air
pollution measurements are sparse in space and/or time,
recognizing the historically high cost of acquiring measure-
ments, spatiotemporally resolved air pollution data are
increasingly in demand. This need arises from the desire to
gain detailed insights into the sources and processes in urban
environments, address societal impacts such as exposures and
inequalities, and facilitate effective management strategies.9−11

There has been a surge of interest in hyperlocal air pollution
monitoring, including mobile monitoring7,8,12−27 and fixed-site
low-cost sensor (LCS) networks.7,28 These methods can
overcome the limitations of traditional monitoring to better
capture the fine-scale structure of air pollution in urban
settings but have their own advantages and drawbacks.7 Mobile
measurements can provide high spatial resolution to quantify
fine-scale concentration gradients, thereby identifying pre-
viously undiscovered pollutant sources and hotspots. However,
they have intermittent temporal coverage, resulting in data that
may miss critical pollution events. In contrast, like their
regulatory monitoring counterparts, fixed-site LCS networks
typically provide temporally complete data. However, despite
considerably higher spatial density in comparison to regulatory
monitoring, LCS networks often still have large spatial gaps
compared to the street-level resolution attainable through

mobile monitoring. Here, we present and explore a new
method for capitalizing on the complementary strengths of
these two hyperlocal monitoring paradigms.

Previous studies have explored methods to address the
limitations of these monitoring strategies.29 These approaches
include land-use regression (LUR),10,18,30−33 kriging meth-
ods,10,34 and a combination of other statistical learning
techniques.4,13,21,30,34, However, few studies have explored
combining fixed-site and mobile measurements into a single
spatiotemporal data product. Adams and Kanaroglou36 utilized
a neural network-LUR framework to combine stationary and
mobile PM2.5 measurements with land-use covariates and
meteorology to develop spatially dense hourly estimates of
PM2.5. Following a similar approach, Simon et al.37 employed
mobile measurements to calculate spatial enhancements in
UFP concentration in relation to a stationary monitor,
subsequently integrating these enhancements into a regression
model. However, very few studies have attempted to integrate
stationary and mobile pollutant measurements into a fully
measurement-driven spatiotemporal model, that is, a model
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relying exclusively on observations as inputs without additional
predictor variables.

Our objective here is to describe, validate, and apply a new
spatiotemporal modeling methodology for capturing fine-scale
spatiotemporal variation in black carbon (BC) by fusing data
from a LCS network and mobile monitoring. By leveraging
information from coherent multipollutant spatial patterns
measured by mobile monitoring, we effectively reveal nuanced
spatiotemporal patterns in BC that are not readily apparent in
either underlying data set.

2. MATERIALS AND METHODS
2.1. Measured Data and Study Area. Our modeling

approach entails fusing time-resolved but spatially sparse fixed-
site data from low-cost sensors with time-averaged but spatially
dense maps from mobile monitoring. The approach allows us
to develop a BC model at high spatial (30 m) and temporal
(15 min) resolution. To do so, we exploit an unusually rich
data set of mobile- and fixed-site measurements collected in
West Oakland (WO), California.

During a 100 day period from 19th May to 27th August
2017, Caubel et al.28 deployed a BC measurement network
consisting of 100 sensors (“100 × 100 BC network”)
distributed over an area of 15 km2 in WO. This network
relied on a custom low-cost sensor (LCS), the Aerosol Black
Carbon Detector (ABCD), which functions similarly to an
aethalometer.38,39 The 100 LCS sites were distributed across
residential, industrial, and high-traffic microenvironments.
These data were recently used by Wai et al.40 in a separate
effort to develop a spatiotemporal BC model. We focus here on
97 sites located within 30 m of the road network covered by
mobile monitoring. The LCS sensors natively report BC at a
resolution of 0.5 Hz.28 We systematically experimented with
multiple LCS averaging times between 1 and 120 min,
ultimately selecting a time resolution of 15 min to balance
between preserving spatial heterogeneity and reducing instru-
ment noise (see Supporting Information (SI) Section S1.1 and
Figure S1 for details).7

In addition, the LCS campaign coincided with an extensive
ongoing mobile monitoring effort that used two custom-
equipped Google Street View cars, which sampled repeatedly
on every city block of WO during 2015−2018. As described by
Chambliss et al.41 and references therein, the vehicles recorded
instantaneous (1 Hz) measurements of GPS location and
concentrations of BC and other pollutants (NO, NO2, ultrafine
particles [UFP], and 6 size-resolved particle concentrations
bins from 0.3 to 10 μm).7,12,18 BC was measured using
photoacoustic extinctiometers (PAX, Droplet Measurement
Technologies, Longmont, CO);42 see SI Section S1.2 for a
description of the full measurement suite for other species.
Chambliss et al.41 found strong instrument−instrument
agreement between the two mobile PAX instruments and
between the PAX and the fixed-site ABCD sensors (PAX−
PAX comparison: Pearson R2 = 0.97 and NRMSE = 0.15;
PAX−ABCD comparison: Pearson R2 = 0.90 and NRMSE =
0.33).

For our core analysis, we use mobile monitoring data
collected between 6 AM and 8 PM on 49 days within the 100
day period that the LCS sensor network operated. This data
set emphasizes weekday, daytime conditions (70% on
weekdays; 71% between 9 am and 4 pm). In previous work,
Apte et al.12 reported that 10−20 repeat drive passes were
sufficient to reproduce key spatial patterns with good precision

and minimal bias. Here, we restrict the spatial domain to those
roads with a minimum of 15 repeated drive visits (median
visits = 31). The ∼150k 1-Hz time-resolved measurements
were aggregated to “median-of-drive-pass-mean” concentra-
tions for ∼4300 30-m-long road segments following the
approach of Messier et al.18 That step resulted in 10 time-
integrated maps for BC and the 9 other measured pollutants.
This suite of multipollutant measurements played an essential
role in developing the spatiotemporal model for BC.
2.2. Spatiotemporal Modeling Framework. 2.2.1. Con-

ceptual Framework. The multifaceted interplay governing air
pollution unfolds across three fundamental dimensions:
location, time, and pollutant composition. However, most air
quality monitoring strategies cannot capture the three
dimensions simultaneously. Rather, dominant monitoring
paradigms tend to emphasize at most two dimensions. For
example, regulatory monitoring systems generally provide
continuous measurements of multiple pollutants but only at
a small number of distinct locations, thus constituting a
pollutant-time system. Maps derived from repeated mobile
measurements frequently yield time-integrated data for many
pollutants at high spatial density, thus representing a pollutant-
location system. LCS networks excel at providing spatial
coverage at high time resolution, constituting a location-time
system, but generally have a more limited capacity to measure
detailed chemical speciation. Similar to a few other recent data-
driven air pollution studies,43,44 our modeling framework is
inspired by a common signal processing technique called
compressive sensing (SI Section S1.3).45−47 Unlike more
conventional spatiotemporal air pollution modeling methods,
this approach relies exclusively on observations as inputs and
does not require spatial or temporal predictor variables (e.g.,
land-use data, meteorology).30−32,48

Matrix factorization techniques (e.g., principal component
analysis [PCA], non-negative matrix factorization [NMF]) are
widely used in air quality research.49−52 These techniques
exploit coherence across spatial, temporal, or chemical
variability to uncover common pollution sources or meteoro-
logical conditions concurrently impacting these dimensions.
Matrix factorizations are routinely applied to pollutant-time
systems to leverage covariance among multiple pollutant time
series to apportion each pollutant to one or more underlying
contributing factors or sources represented by a set of
covarying pollutants.49 The same techniques can also be
extended to pollutant-location53 and location-time50 systems.

Our approach is grounded in the assumption that if common
sources or meteorological conditions influence the spatial
distribution of multiple pollutants across several time scales,
information captured along one dimension can be leveraged to
bridge gaps along another dimension. Here, we use the spatial
variability captured by time-averaged multipollutant mobile
measurements to fill spatial gaps between fixed-site BC
measurements. At its core, the model decomposes a
pollutant-location system, represented by mobile measure-
ment-derived maps for multiple pollutants, and a location-
time system, represented by continuous fixed-site BC measure-
ments. This decomposition allows for the extraction of spatial
patterns that repeat across multiple pollutants and across
different time scales, respectively. By decomposing the input
multipollutant maps (pollutant-location) into a smaller set of
repetitive patterns, we are able to express each map as a
weighted combination of these patterns (see SI Section S1.4
and Figure S2). Likewise, we decompose the 97 unique LCS
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time series (pollutant-time) into a smaller set of temporal
patterns, with each site’s time series expressed as a weighted
combination of these patterns. Given that the same
meteorological conditions and emission sources influence
both sets of patterns, the model establishes a best-fit
relationship between them. Consequently, the model utilizes
the more comprehensive multipollutant spatial patterns from
mobile measurements to fill in the spatial gaps in BC observed
in the sparser patterns from fixed-site measurements.

2.2.2. Mathematical Model. Figure 1 provides a schematic
illustration outlining our approach. Figure 1a highlights how
the multipollutant maps can be represented as a pollutant ×
location matrix, say XM ∈ Rp×l, with each matrix element
representing time-averaged concentrations of the pth pollutant
and lth location. In this study, p = 10 pollutants and l = 4370
locations (i.e., 4273 road segments plus 97 LCS network sites;
we extended the pollutant measurements from the road
segments to the nearby LCS sites using ordinary kriging).53

Figure 1. Schematic of a spatiotemporally complete model of BC based on the fusion of mobile and fixed-site data sets collected
contemporaneously over 100 days in the Summer of 2017. Conceptually, the approach uses multipollutant information from (a) mobile
monitoring, which produces time-averaged but spatially complete multipollutant maps, to fill in spatial gaps in a (b) sparser network of 97 fixed-site
BC monitors that provide temporally complete data. To do so, we use matrix factorization (a) to represent time-averaged mobile monitoring maps
for 10 pollutants as a linear combination of 5 factors with each factor having its own richly detailed spatial map (“pollutant-invariant spatial
patterns”). Likewise, we decompose (b) the 100-day temporal variation of 15 min data (9600 observations) at fixed sites into 16 characteristic time
signals. The relative weighting of these signals over all sites forms 16 “time-invariant spatial patterns”. In part (c), we derive an optimal reprojection
matrix that links the 5 spatially dense multipollutant spatial patterns from part (a) to the 16 spatially sparser temporal patterns from part (b).
Finally, these reprojection coefficients are employed to develop a spatially dense temporally continuous model for BC (d) that provides 9600 time
estimates (100 days with 15 min data) over a map of 4370 locations in our measurement domain.
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This matrix XM can now be factorized into a pollutant subspace
WP and a location subspace HL, using NMF as follows

= × ×X W H W HR ; RM P L P L
p k k l

(1)

Drawing on analogy to the concept of pollutant-time source
apportionment, NMF applied to this pollutant-location matrix
apportions the spatial variation in concentration to k-source
profiles. In the present case, using the knee-point method, we
found a five-factor solution (i.e., k = 5) to be optimal for
describing the input data (See SI Section S1.5 and Figure S1
for details). WP represents the fractional abundance of the pth
pollutant in the kth source, and thus, each column vector in WP
represents a source profile or source signature (Figure 1a). HL
represents the normalized concentration attributable to the kth
source at the lth location, and thus, each row in HL represents a
pollutant-invariant spatial pattern. Analogous to how pollutant-
time source apportionment yields source profiles and
corresponding time signals, each pollutant-invariant spatial
pattern describes the impact corresponding to each derived
source profile. While these source profiles may contain
interpretable information, here, our focus is on using their
spatial signatures to translate coherent patterns from one
dimension to another.

The second component of the spatiotemporal model
consists of the BC measurements obtained from the LCS
network. Figure 1b represents the fixed-site BC measurements
as a location × time matrix, say XF∈Rx×t. For the current study,
we have 97 LCS sites (s). We averaged measurements at 15
min time resolution over the 100 day study duration, resulting
in 9600 timesteps (t). XF can similarly be decomposed into a
spatial (WS) and temporal (HT) subspace using NMF as
follows:

= × ×X W H W HR ; RF S T S T
s q q t (2)

Through systematic exploration, we determined that the most
suitable value for q was 16 factors (See SI Section S1.5 and
Figure S1 for details.) Here, each of the q = 16 rows of HT
represents one of the 16 characteristic time signals, and each of
the columns WS represents a spatial pattern that remains
invariant for that corresponding signal, thus a time-invariant
BC concentration field or time-invariant spatial pattern (Figure
1b). These patterns denote sets of spatial points that covary
according to the same time signal. While we do not focus here
on the interpretability of these patterns, they may reflect
diurnal factors such as traffic or industries or meteorological
conditions like wind patterns or urban infrastructure impacts,

Figure 2. Evaluation of model performance across multiple spatiotemporal scales. (a) Comparison of the spatiotemporal averages along the
sampled drive path for mobile measurements (lef t) and model predictions (center) for all days when mobile sampling occurred. Each data point and
cell represents a 15 min “Lagrangian” spatiotemporal average along the vehicle drive path. (b) Temporal aggregation of time-resolved mobile
measurements (lef t) and model predictions (center) to produce spatial maps of the campaign-integrated median BC concentrations. Note the high
coherence between the spatial patterns of mobile measurements and model predictions.
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affecting similar locations in a similar manner. The NMF-based
decomposition of the mobile and fixed-site data yields two
matrices, HL and WS, corresponding to a set of pollutant-
invariant and time-invariant spatial patterns, respectively.
Revisiting our initial assumption, if we posit that common
pollution sources and meteorological conditions influence the
spatial distribution of pollutant concentrations consistently
over time, then these pollutant-invariant and time-invariant
spatial patterns essentially portray different perspectives of the
same underlying reality. Consequently, they can be reciprocally
reprojected, effectively expressing one in terms of the other. In
other words, each pattern in one of the sets can be expressed as
a combination of patterns in the other set.

Figure 1c illustrates this reprojection process. It starts by
taking a transpose of pollutant-invariant location subspace HL

T

∈ Rl×k and subsampling it to the locations where fixed-site
measurements are available, using a binary sampling matrix ⌀
∈ Rs×l, resulting in ⌀HL

T ∈ Rs×k, which represent the 5
pollutant-invariant patterns at the 97 LCS sites, i.e., the overlap
between the pollutant-invariant and time-invariant patterns.
This subsampled matrix subsequently undergoes a Moore−
Penrose Inverse with respect to the time-invariant location
subspace WS ∈ Rs×q, yielding a coefficient matrix C ∈ Rk×q.
Each column of this coefficient matrix signifies the best-fit
coefficients for representing each of the 16 time-invariant
patterns (derived from eq 2) as a combination of the 5
pollutant-invariant patterns such that

|| ||Cargmin W H
C

S L
T

2 (3)

The matrices ⌀HL
T ∈ R97×5 and WS ∈ R97×16 represent the

pollutant-invariant patterns and the time-invariant patterns at
the set of spatial points where both patterns overlap: the LCS
network sites (Figure 1c). The coefficient matrix C ∈ R5×16

effectively maps one set onto the other. While we derived C
using an overlapping subset between the time-invariant and
pollutant-invariant patterns, the pollutant-invariant set HL

T ∈
R4370×5 possesses denser spatial information. Leveraging C, we
can now “fill in the gaps” by combining the pollutant-invariant
patterns using C to generate spatially augmented versions of
the time-invariant patterns, expressed as HL

TC ∈ R4370×16.
These augmented patterns are finally multiplied with the
corresponding characteristic time signals, HT ∈ R16×9600 (eq 4),
as shown in Figure 1d, to generate the desired model output:
spatiotemporally complete BC estimates.

= × × ×CX H H H C HR ; R ; RBC L
T

T L
T

T
k l k q q t

(4)

The matrix XBC represents the resultant model estimates of BC
integrating the spatial density of mobile measurements and
temporal completeness of the fixed-site LCS measurements. In
essence, the model leverages dense spatial patterns observed
across multiple pollutants to fill gaps in sparser spatial patterns
repeating over time to estimate a spatiotemporally complete
BC surface.
2.3. Core Model and Sensitivity Cases. Here, we briefly

describe the core model, which we present in Figures 2−4, as
well as a set of five alternative models (see Table S1)
developed to interrogate the robustness of our overall
approach. The core model is developed using data from 97
fixed-site BC sensors, operating over the 100 days from May
19th to Aug 27th, 2017, and time-averaged multipollutant
maps developed based on 49 days of available data from the

two Google Street View cars operating in this time period. The
factor analyses, core model, and all sensitivity test models were
primarily developed using Python, leveraging multiple open-
source libraries and packages (see SI Section S1.6 for details).

Sensitivity cases A and B aid in evaluating the out-of-sample
prediction fidelity of our model. In sensitivity case A, we
iteratively trained the model twice, each time using data from
only one of the two Google Street View cars (and all of the
data from the LCS sites), using the time-resolved and time-
averaged data from the held-out car exclusively for model
evaluation.12 In sensitivity case B, we trained the model on a
randomly selected subset of 70% of the LCS sites (68) and
iteratively refit the model 1000 times using different
permutations of sites for the training. We then use the
remaining 30% of fixed sites to test the out-of-sample
prediction performance of the spatiotemporal model. In
sensitivity case C, we explored how model performance
depends on the number of overall LCS fixed sites by
parametrically sampling and refitting the model 1000 times
each for a random subset of 10 to 80 LCS sites. Since the
model relies on “representative” time-averaged mobile maps12

rather than time-varying mobile measurements, in sensitivity
case D, we explored the sensitivity of our results to the period
of mobile monitoring data. To do so, we incorporated mobile
monitoring from a random selection (repeated with 100
Monte Carlo iterations) of 49 drive days from other years and/
or seasons collected during the time window between May
2015 and December 2017 but excluding the 100 day window
of the LCS sampling campaign. In sensitivity case E, we
systematically assessed how model performance is impacted by
the number of pollutants (in addition to BC) measured using
mobile monitoring (see Table S1).

3. RESULTS AND DISCUSSION
Our spatiotemporal model estimates BC concentrations during
100 days at 15 min resolution for all ∼4300 30-m road
segments in the ∼15 km2 West Oakland domain. We first
describe our process for evaluating model performance and
then discuss the key insights from the outputs.
3.1. Model Performance Evaluation. Because our model

makes spatiotemporally complete estimates, whereas available
observation data sets are sparser in space and/or time, careful
consideration is needed to evaluate our predictions at an
appropriate “apples-to-apples” spatiotemporal resolution. In
addition to directly validating our core model against mobile
and LCS data at multiple spatial, temporal, and spatiotemporal
scales, we performed cross-validation analyses in sensitivity
cases A and B to use fully independent data sets for model
validation.
3.1.1. Evaluation Using Mobile Monitoring Data. Because

our model uses mobile monitoring data that has been
extensively time-averaged, time-varying mobile BC measure-
ments are useful for validation, especially for temporal
performance (Figure 2). We compare our model output
against mobile measurements in 15 min model timesteps using
a “Lagrangian” approach, where we follow the vehicle’s
sampling path. For each 15 min time window with available
mobile data, we compare (i) the time average of the measured
1 Hz BC concentrations along the sampling route during this
time interval and (ii) the spatial average of the 15 min-average
model predictions for all road segments traversed by the
vehicle (see SI Section S1.7 for details of our Lagrangian
comparison method).
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3.1.1.1. 15 min Spatiotemporal Averages. In Figure 2a, we
compare 15 min spatiotemporal averages for mobile measure-
ments (Figure 2a, left) and model predictions (Figure 2a,
center). This evaluation spans all 49 days when mobile
sampling took place during the 100 day observational period
between 9 AM and 4 PM. We find a high correlation R = 0.77
between measured and predicted BC concentrations, even
when assessed at a 15 min temporal resolution (Figure 2a,
right). (Intriguingly, Figure S3 shows that that our model is
also capable of reproducing spatial patterns within individual
15 min time intervals with good fidelity: median R = 0.52.)

The model performs well in capturing 15 min-average
concentrations with low to moderate BC concentrations
(0.2−1.5 μg/m3) and tends to slightly underpredict the
highest concentrations, with the peak absolute error typically
falling within the order of approximately 25% (Figure S4). We
attribute this in part to the model’s inherent limitations in
accurately resolving sudden sharp peaks, a challenge shared by
other spatiotemporal models. Figure S4a depicts residuals
between measured and predicted spatiotemporal averages for
all 15 min intervals across all drive days. The distribution of

Figure 3. Temporal gap-filling. (a) Time-series heatmap shows median BC concentrations for daytime hours, comparing mobile measurements,
fixed-site measurements, and model predictions. Note how the poor spatial and temporal representativeness of mobile measurements on any given
day leads to a low correlation with measurements. Panels (b) and (c) show results for Monday June 5 and Saturday July 29. Maps from a single day
of driving (lef t) have large spatial gaps and are not temporally representative. Fixed-site measurements (center) are temporally complete but spatially
sparse. In contrast, predicted BC maps from the model (right) provide spatial completeness at any temporal scale. Here, we show daytime median
BC predictions for two different days, revealing distinct spatial patterns that likely arise from differences in activity, emissions, and meteorology.
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errors appears random, with no evident temporal bias (see
Figure S4a).

We next investigate whether our model is capturing unique
spatiotemporal features, rather than simply tracking the general
temporal evolution of urban background concentrations,
following the approach of Wai et al.40 We find that our core
model has a substantially superior performance against mobile
measurements than a time series of area-wide-average model
predictions (R = 0.77 vs 0.54, see Figure S5), indicating that
our model is capturing intricate spatiotemporal features, not
just general temporal patterns that hold across the domain.

Finally, we iteratively held out one of the two cars’
monitoring from model building and then used those data
for model testing (sensitivity case A, see Section 2.3 and Table
S1). Our results show similar performance using one car
exclusively for model validation, with strong spatiotemporal
correlations of R = 0.73 and 0.80 (see Figure S6).
3.1.1.2. Campaign-Integrated Spatial Patterns. Next, we

assess the model’s ability to replicate observed spatial patterns
for the 100 day average (Figure 2b). We compare the time-
integrated spatial patterns (median-of-drive-pass-mean con-
centrations) that emerge from the full mobile monitoring
campaign, comparing the aggregation of mobile measurements
(Figure 2b, left) against the aggregation of time-resolved
model predictions made along the Lagrangian trajectory of the
mobile laboratories’ repeated visits to each 30 m road segment.
This comparison shows an even stronger correlation, R = 0.85
(Figure 2b, right), with no systematic spatial pattern of
residuals (Figure S4b). This investigation highlights that the
spatial performance of the model improves somewhat when
averaging over a longer period.
3.1.2. Evaluation Using Fixed-Site LCS Data. To assess the

skill of our model at predicting time-series data at fixed sites,
we repeatedly used the 30% holdout scheme we described in
sensitivity case B to make out-of-sample predictions at LCS
sites excluded from model development (see Section 2.3, Table
S1, and Figure S7a). The results indicate a very high
correlation of predicted and measured BC time series (for
the median out-of-sample site, the temporal R = 0.95, 10th to
90th percentile range of 0.80−0.97) at the LCS network sites
as shown in Figures S7 and S8. The normalized mean bias
(NMB) is approximately −5%, while the normalized mean
absolute error (NMAE) and normalized root-mean-squared
error (NRMSE) are 20 and 25%, respectively. Thus, on
average, the model exhibits a slight tendency to underpredict
the observed concentrations. It is interesting to contrast our
results with those from the spatiotemporal model of Wai et
al.,40 who report a lower mean temporal R2 value of 0.60
(compared to a Pearson R2 of ∼0.90 here) when predicting
LCS measurements in a similar leave-site-out evaluation. We
attribute the improvement in temporal performance in part to
the additional spatial information that mobile monitoring data
contributes to our spatiotemporal model.

Considering that mobile monitoring was predominantly
conducted on weekdays from 9 AM to 4 PM, we also assessed
whether this limited temporal coverage impacts model
performance during time periods when only LCS measure-
ments are available. To do so, we segmented the model output
by weekday/weekend and daytime/nighttime categories for
each of the leave-site-out cross-validation trials. Figure S7b
provides an overview of these results, demonstrating consistent
model performance across all temporal subset conditions. This
result is noteworthy as it underscores that the model’s

performance remains relatively unaffected by the absence of
mobile measurements during specific days or times, suggesting
that the continuous temporal coverage provided by the LCS
enables the model to dynamically adjust the weighting of the
spatially coherent patterns derived from mobile monitoring
data. As a result, the model can identify spatial patterns that
might be missed by LCS sites.
3.2. Model Application: Filling in Spatiotemporal

Gaps. Next, we explore how the spatiotemporal model can
provide new insights by filling monitoring gaps in space and
time.
3.2.1. Temporal Gap-Filling. We start with an illustration

(Figure 3), which depicts how temporally complete model
predictions can offer new insights into the complete spatial
patterns of BC at finer time resolution than would be possible
with the temporally incomplete mobile monitoring data. Figure
3a depicts the daily time series of spatial averages of daytime
(9:00−16:00) median BC concentrations as observed by
mobile measurements, LCS measurements, and model
predictions over the 100 day study period. We find that the
time series of daily spatial averages of our spatiotemporal
model closely reproduces that of the LCS sensors (R = 0.99).
In contrast, we find a lower temporal correlation (R = 0.54)
between the spatial averages of the daily mobile measurements
and our spatiotemporal model. This result makes sense. Within
just 1 day of driving, mobile monitoring does not generally
capture spatially representative concentration patterns, whereas
a spatiotemporally complete model can represent fine-scale
spatial patterns for a single day. Moreover, temporally
complete model predictions can help address notable
limitations of mobile monitoring, including subtle but
irreducible temporal sampling biases and the emphasis on
daytime sampling.

Next, we contrast daily median spatial patterns for two
illustrative days during the campaign: Monday, June 5th, and
Saturday, July 29th, 2017 (Figure 3b−c). For mobile
measurements, maps derived from a single drive pass are
inherently spatially complete and temporally unrepresentative
(Figure 3b−c, lef t). In contrast, fixed-site measurements
(Figure 3b−c, center) and model predictions (Figure 3b−c,
right) are temporally complete and thus are representative of
spatial variability for a given day. Our daily model predictions
are well correlated with LCS observations for these 2 days
(spatial R = 0.8 and 0.75, respectively; see Figure S9).

Relative to the LCS network, a key advantage of the model is
that it can reveal distinct spatial patterns linked to activity that
differ from day to day, including sharp concentration gradients
near highways, industrial sites, or truck routes converging to
the port. Many of these spatial features are in areas overlooked
by the sparser LCS network. The time-resolved (i.e., daily)
spatial patterns from the model output (Figure 3b−c, right)
can deviate substantially from the campaign-averaged map of
mobile measurement (cf. Figure 2b, lef t), revealing inter-
mittent spatial features that are the signature of many of the
BC sources in the study domain.
3.2.2. Spatial Gap-filling of Time-Series Data. We next

consider how the spatiotemporal model can fill spatial
monitoring gaps. We demonstrate that our spatiotemporal
model reveals how the temporal variation in BC levels can be
quite distinct over even short spatial distances.

To motivate this discussion, we first compare domain-wide
maps of the campaign medians of the fixed-site LCS
measurements (Figure 4a), and the spatiotemporal model
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overlaid on the LCS measurements (Figure 4b). Figure 4c
provides a zoomed-in view of a single neighborhood containing
both residences and multiple industrial facilities, where model
predictions exhibit fine-scale spatial variability not captured by
the sparser fixed-site sensors. Considering distinct days of week
and times of day, Figures 4d-e illustrate that while the LCS
sites capture the overall contrast, the finer-scale spatial
variation of the model reveals more about the locations of
specific activities. Model predictions are overlaid onto LCS
sites, revealing the spatial variability captured versus missed
across different days of the week or times of the day. The
pronounced contrast in fine-scale spatial features, particularly
comparing Friday to Sunday (weekday/weekend) and 3:00 am
to 8:00 am (night/day), illustrates how spatial features

correspond with the operating hours of major emissions
sources in the neighborhood.

To further illustrate the model’s proficiency in capturing
fine-scale spatial patterns over time, we investigate the fine-
scale spatial variability of the time series predicted by the
model. We examine how the diurnal variation of BC varies
along a ∼ 1 km spatial transect defined by a specific road,
Union Street (Figure S10). Figure 4f shows heatmaps of the
measured diurnal cycles for four closely spaced LCS sites within
three city blocks along Union Street. The diurnal patterns vary
across the four sites, revealing localized pollution hotspots near
facilities such as a metal recycling plant and a moving
company.28 We find that the model is capable not only of
reproducing similar diurnal profiles (Figure S11) at these four
locations (Figure 4g) but also reveals sharp variation in the

Figure 4. Spatial gap-filling of time-series data. (a) Campaign median of fixed-site BC measurements. (b) Median model predictions overlaid on the
sensor network, revealing within-neighborhood variation. (c) Close-up view in a neighborhood surrounding a metal recycling cluster. This spatial
gap-filling can be extended to distinct days of the week (d) or times of day (e), revealing localized pollution hotspots near emission sources that are
not captured by the spatially sparser monitoring network. We contrast weekday and weekend diurnal time series along a single transect (Union
Street) within the zoomed-in region. (f) Diurnal cycles for four closely spaced monitors within three city blocks (site IDs from Caubel et al.28),
illustrating the presence of localized pollution sources. (g) Model predictions over the same ∼1 km transect, illustrating how the magnitude of BC
and the corresponding diurnal signatures vary markedly among unobserved locations.
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diurnal profiles at unobserved locations along the Union Street
transect. These nuanced diurnal signatures over short distances
correspond to localized differences in the microenvironment in
this mixed neighborhood, including major roadways, areas near
industrial sites, and residential zones. Imagery in Figure S10
provides further context to these findings. This vignette within
one heterogeneous neighborhood shows how a spatiotempor-
ally complete model can fill measurement gaps to identify
intricate spatial patterns in BC concentrations.
3.3. Limitations and Design Considerations for

Future Campaigns. In the present study, we were able to
leverage an unusually rich data set of mobile and fixed-site
monitoring. We conducted a series of data experiments to
explore the potential of our method to work with monitoring
data that is more limited along multiple distinct axes: fewer
fixed sensors, less temporally representative mobile monitor-
ing, or fewer pollutants.

In sensitivity case C (see Section 2.3 and Table S1), we
explore how model performance varies as a function of fixed
sites used to construct the model. We find sharply diminishing
returns to model performance after including more than 40
randomly selected sites out of the existing 100 sites (Figure
S12). If we had sufficient information (e.g., from an initial
deployment of many LCS) to place sensors optimally rather
than randomly, fewer sensors would be required (see SI
Section S1.8).43 In Figure S13, we illustrate results from an
optimal sensor placement algorithm,45 which suggests that as
few as 20 well-placed sensors would enable us to reproduce the
performance of our core model. As detailed in Section S1.8,
the optimal sensor placement algorithm is designed to
maximize the spatiotemporal variability captured for a given
number of sites. Although the algorithm is purely data-driven,
the 20 sites identified as optimal in Figure S13e are located
near industrial facilities, designated truck routes, freeways, the
port, and railyards�areas where high spatiotemporal varia-
bility in BC emissions is expected.

Likewise, it may not always be feasible to simultaneously
collect mobile and fixed-site measurements. However, since
our model only requires time-averaged maps from mobile
measurements, we used sensitivity case D to assess whether
mobile measurement maps derived from a period outside the
fixed-site measurement’s time frame could still yield viable
results (see Section 2.3 and Table S1). As shown in Figure S14,
we found our model’s spatiotemporal performance declined
modestly (median R = 0.67 vs 0.77) when trained on mobile
monitoring data outside of the 100 day study period.

Another consideration is the number of unique pollutants
measured by multipollutant mobile monitoring. In sensitivity
case E, we systematically considered models developed with
combinations of BC and fewer than the 9 total species
measured by our mobile monitoring. As we increased the
number of species incorporated from 4 to 10 (Figure S15), we
found meaningful improvement in R (from ∼0.6 to 0.77) and
other measures of model performance. We attribute this
improvement to the broader range of pollutants, along with
their shared variance, which enables the model to better
identify pollutant-invariant patterns and thereby more
effectively fill spatiotemporal gaps. However, with the available
evidence, it is difficult to reliably isolate the unique influence of
a specific pollutant on model performance since pollutants
have correlated spatial patterns (Figure S2) that arise because
of common sources and meteorology. Rather, Figure S15
suggests that the model is more sensitive to the number of

pollutants included than to which pollutants are included,
implying that our factor analysis benefits principally from
having a large set of pollutants, each with somewhat unique
spatial patterns. We do not see clear evidence of diminishing
returns to adding additional pollutants to the mobile suite from
n = 4 to 10.

It remains an open question whether this modeling approach
would perform well for reactive or secondary air pollutants.
Likewise, it would be useful to confirm our findings for BC in
other settings with different sources and meteorology.
Replicating this study’s resource- and labor-intensive level of
monitoring may not be feasible everywhere. However, our
sensitivity analyses suggest that this modeling technique is
viable even with considerably fewer mobile or fixed-site
measurements and thus would provide useful information in
filling in spatiotemporal gaps from monitoring. Nonetheless, as
a data-driven technique, a key limitation is that our approach is
not capable of predicting concentrations for time periods or
spatial domains that altogether lack measurements. Moreover,
in contrast to physics-based models (e.g., dispersion or
chemical-transport models), our model is not capable of
simulating the impact of emissions changes or other
interventions.

4. IMPLICATIONS AND FUTURE WORK
Finely resolved measurements of air pollution in space and
time are increasingly needed. This study demonstrates the
benefits of combining two disparate monitoring strategies
rather than relying on low-cost sensors or mobile monitoring
in isolation for capturing the spatiotemporal variation of a
primary pollutant (e.g., BC) within a complex urban
environment. The novel spatiotemporal model presented
here integrates these measurements effectively, revealing fine-
scale features in space and time that would be overlooked if
considering one monitoring approach individually. A unique
aspect of this approach is in using spatial patterns recurring
over multiple pollutants collectively to fill spatial gaps observed
for a single pollutant over time. Future endeavors can also
explore extending the model’s applicability to other pollutants,
particularly reactive ones, and to regions with different
meteorological regimes.

Our modeling approach holds potential for broader
applications. Future investigations could assess the impact of
human mobility on pollutant exposures using finely resolved
spatiotemporal models.54 Additionally, the spatiotemporal
completeness provided by our model ensures spatial and
temporal representativeness when aggregating the output at
different scales. This feature may be particularly valuable for
epidemiological studies, which often require processed data
products like exposure estimates at residential addresses or
census block level, either at a time-resolved or time-averaged
scale. The fine resolution and completeness of our model
output ensure the representativeness of these aggregates in
such scenarios. In the future, this modeling approach may
prove useful in expanding the capabilities of emerging
hyperlocal air pollution observation systems. If applied over
periods of time with changing emissions (e.g., in response to
control policies, changes in traffic, or the addition of new
sources), this method may aid accountability studies in
identifying zones of changing emissions and exposure impact.55
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