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A B S T R A C T   

Mounting evidence indicates dryland ecosystems play an important role in driving the interannual variability 
and trend of the terrestrial carbon sink. Nevertheless, our understanding of the seasonal dynamics of dryland 
ecosystem carbon uptake through photosynthesis [gross primary productivity (GPP)] remains relatively limited 
due in part to the limited availability of long-term data and unique challenges associated with satellite remote 
sensing across dryland ecosystems. Here, we comprehensively evaluated longstanding and emerging satellite 
vegetation proxies in their ability to capture seasonal dryland GPP dynamics. Specifically, we evaluated: 1) 
reflectance-based proxies normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), 
near infrared reflectance index (NIRv), and kernel NDVI (kNDVI) from the MODerate resolution Imaging Spec-
troradiometer (MODIS); and 2) newly available physiologically-based proxy solar-induced chlorophyll fluores-
cence (SIF) from the TROPOspheric Monitoring Instrument (TROPOMI). As a performance benchmark, we used 
GPP estimates from a robust network of 21 western United States eddy covariance tower sites that span repre-
sentative gradients in dryland ecosystem climate and functional composition. We found that NIRv and SIF were 
the best performing GPP proxies and captured complementary aspects of seasonal GPP dynamics across dryland 
ecosystem types. NIRv offered better performance than the other proxies across relatively low-productivity, 
sparsely non-evergreen vegetated sites (R2 = 0.59 ± 0.13); whereas SIF best captured seasonal dynamics 
across relatively high-productivity sites, including evergreen-dominated sites (R2 = 0.74 ± 0.07). Notably, across 
grass-dominated sites, all reflectance-based proxies (NDVI, SAVI, NIRv and kNDVI) showed significant seasonal 
bias (hysteresis) that strengthened with the total fraction of woody vegetation cover, likely due to seasonal 
patterns in woody vegetation reflectance that are unrelated to or decoupled from GPP. Future efforts to fully 
integrate the complementary strengths of NIRv and SIF could significantly improve our understanding and 
representation of dryland GPP dynamics in satellite-based models.   
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1. Introduction 

Dryland ecosystems cover more than 40% of Earth's land surface and 
are a major driver of the interannual variability and subsequent trend in 
the terrestrial carbon sink (Poulter et al., 2014; Ahlstrom et al., 2015; 
Smith et al., 2019). A better understanding of these critical ecosystems is 
urgently needed, since aridity is projected to increase with climate 
change, potentially resulting in the expansion of drylands to more than 
half of the planet's terrestrial surface by 2100 (Reynolds et al., 2007; 
Huang et al., 2016, 2017; Yao et al., 2020). Yet, despite their emerging 
importance, there remains limited availability of continuous, long-term 
measurements of carbon cycling in dryland regions, resulting in data 
products that are poorly constrained (Biederman et al., 2017). 

Satellite observations have provided key insights into dryland GPP 
dynamics over the last four decades (Smith et al., 2019), and have been 
used as observational input in numerous satellite-based GPP products 
(Smith et al., 2016; Bodesheim et al., 2018; Robinson et al., 2018). Yet, 
GPP cannot be directly observed and satellite-based GPP products have 
been found to perform relatively poorly across heterogeneous dryland 
regions (Verma et al., 2014; Biederman et al., 2017). For example, the 
widely-used MODerate resolution Imaging Spectroradiometer (MODIS) 
GPP product captured only about 30% of the interannual variation in 
GPP observations across a network of dryland eddy covariance tower 
(EC) sites in United States (US) (Biederman et al., 2017). This is due in 
large part to unique challenges associated with drylands, which repre-
sent dynamic mixtures of herbaceous, woody, and bare soil components, 
that limit the ability of common satellite vegetation proxies, such as the 
normalized difference vegetation index (NDVI), in their ability to track 
vegetation function (Smith et al., 2018; Allred et al., 2020; Ma et al., 
2020). 

Multiple surface reflectance-based proxies have been developed to 

better constrain our understanding of dryland GPP including soil 
adjusted vegetation index (SAVI), near infrared reflectance index 
(NIRv), and kernel NDVI (kNDVI). SAVI and NIRv are thought to reduce 
the confounding effects of background soil brightness (Huete, 1988; 
Badgley et al., 2017), and NIRv is also thought to capture the depth 
distribution of canopy photosynthetic capacity, thus more accurately 
capturing changes in structurally complex landscapes (Badgley et al., 
2017, 2019; Baldocchi et al., 2020). The recently developed kNDVI was 
designed to exploit all higher-order relationships between the input 
surface reflectance observations, and thus better represent any non- 
linearity in the NDVI:GPP relationship (Camps-Valls et al., 2021). Yet, 
to our knowledge, these reflectance-based proxies, particularly NIRv and 
kNDVI, have not been comprehensively evaluated across dryland 
ecosystem types specifically. 

Solar-induced chlorophyll fluorescence (SIF) is a promising advance 
in remote sensing and fundamentally different from the above vegeta-
tion reflectance-based proxies. SIF is not based on vegetation reflec-
tance, but instead a measure of radiance emitted by the vegetation 
during the light reactions of photosynthesis. SIF is unique in that it has 
both physical and physiological controls, and thus may represent a 
critical advance in our ability to track GPP (Joiner et al., 2014; Walther 
et al., 2016). Previous studies have indicated a near-linear relationship 
with GPP, but the extent to which factors such as environmental con-
dition and spatial heterogeneity mediate the SIF:GPP relationship re-
mains unresolved and an area of active research (Guanter et al., 2007, 
2014; Sun et al., 2017; Smith et al., 2018). A particular advantage of SIF 
is its apparent ability to track changes in GPP even in the absence of 
changes in spectral reflectance (Smith et al., 2018; Zuromski et al., 2018; 
Magney et al., 2019). Surface reflectance-based proxies often over-
estimate GPP when plants are green but photosynthetically inactive (e. 
g., evergreen species during periods of severe drought), which can result 

Fig. 1. (a) Locations of the 21 eddy covariance tower (EC) sites distributed across the western US. Abbreviations correspond to the AmeriFlux network site codes and 
symbol colors denote prevailing ecosystem type. Base map shows the 2016 Landsat-based National Land Cover Database (NLCD). (b) The sc-SRM EC site with 1.5- 
km2 and 16-km2 buffers against the 2016 NLCD data product background. (c) The sc-SRM EC site with 1.5-km2 and 16-km2 buffers against an RGB composite 
background showing the three major vegetation covers: 11% bare ground, 28% grass, and 29% woody (shrub+tree) within a 1.5-km2 grid and 14% bare ground, 26% 
grass, and 30% woody covers within a 16-km2 grid. 
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in seasonal hysteretic relationships between these proxies and GPP 
(Gitelson et al., 2014; Flanagan et al., 2015; Nestola et al., 2016; Wang 
et al., 2020a). The recently launched TROPOspheric Monitoring In-
strument (TROPOMI) represents a revolutionary advance in SIF obser-
vation by providing daily global coverage and relatively high spatial 
resolution (Köhler et al., 2018). With TROPOMI SIF estimates, we have a 
first-time opportunity to fully evaluate at relatively high spatiotemporal 
resolution the potential of SIF for improving seasonal GPP estimates 
across dryland ecosystems. 

Drylands have long been recognized as useful test-beds for evalu-
ating satellite proxies in their ability to track different aspects of vege-
tation dynamics (Tucker, 1979; Smith et al., 2019). However, it remains 
unclear how factors like functional and structural diversity, such as bare 
ground exposure, impact these evaluations (Smith et al., 2019). Dryland 
vegetation communities are characterized by a seasonally dynamic 
mixture of annual and perennial grasses, shrubs and trees growing 
individually or in small groups, and exposed bare ground (Brandt et al., 
2020). Yet, these heterogeneous mixtures of functional types are clas-
sified as simply grass- or shrub-dominated in widely used land cover 
classifications including the National Land Cover Database (NLCD) 
(Dewitz, 2019). As a result, the importance of functional and structural 
diversity in influencing the relationship between satellite proxies and 
ecosystem function has been underexplored (Smith et al., 2019). The 
availability of new fractional vegetation cover products that quantify 
heterogeneity in annual and perennial grasses, shrubs, trees, and bare 
ground at the sub-pixel level provide a first opportunity to address this 
knowledge gap and quantify the mediating role of functional and 
structural diversity in influencing the relationship between the above 
identified satellite proxies and ecosystem GPP (Jones et al., 2018; Allred 
et al., 2020). 

Here, we comprehensively evaluate NDVI, kNDVI, NIRv, SAVI, and 
SIF in their ability to capture seasonal dryland GPP dynamics. As a 
performance benchmark, we used GPP estimates from a robust network 
of 21 western US eddy covariance tower sites that span representative 
gradients in dryland ecosystem climate and functional composition. We 
further integrate a new fractional vegetation cover product, the Ran-
geland Analysis Product (Allred et al., 2020), to fully classify each site by 
its functional type heterogeneity. Our over-arching research questions 
are: (1) how well do reflectance-based proxies (NDVI, SAVI, NIRv, and 
kNDVI) and a physiologically-based proxy (SIF) track seasonal GPP 
dynamics across dryland ecosystems? (2) how does functional hetero-
geneity of dryland ecosystems mediate the performance of these two 
distinct classes of vegetation GPP proxies? (3) can a simply integrated 
proxy perform best by combining the independent strengths of 
reflectance-based and physiologically-based proxies? 

2. Methods 

2.1. Study area and land cover classification 

We used GPP estimates from 21 EC sites distributed across ecological 
sub-regions of the western US (Fig. 1, Table S1) (Biederman et al., 2017; 
Smith et al., 2018). Daily GPP was averaged from half-hour observations 
of GPP at each EC site between April 2018 and December 2019 (Fig. 1, 
Table S1; ameriflux.lbl.gov). The widely used partitioning algorithm 
(Reichstein et al., 2005; Lasslop et al., 2010) was used to partition the 
net ecosystem exchange of CO2 flux into GPP and ecosystem respiration. 

EC sites were classified as shrub-sparse, shrub-closed, grass-sparse, 
grass-closed, evergreen-needleleaf-tree-sparse, and evergreen- 
needleleaf-tree-closed using 30-m fractional land cover estimates for 
the year 2019 from the Rangeland Cover V2.0 data product (Allred et al., 
2020) (Fig. 1, Table S1). We first calculated the mean fractional cover of 
bare ground, grass, shrub, and tree within a 1.5-km2 and 16-km2 area 
around each EC site. We note that sites may have some photosynthetic 
soil cover (i.e., biological soil crusts; Ferrenberg et al., 2017), and this 
cover was categorized as bare ground. While incorporating biological 

soil crust cover may help improve dryland GPP assessments in the future 
(Smith et al., 2019), those data do not currently exist and are beyond the 
scope of this study. 

Sites with tree cover as the largest factional cover within 1.5-km2 of 
the EC tower were classified as tree-dominant sites. We used the ratio 
between woody (tree+shrub) and total vegetation coverage (Ratio1) to 
define shrub-dominant and grass-dominant sites. Sites that were not 
tree-dominated and Ratio1 > 0.4 were classified as shrub-dominated; 
otherwise, sites that were not tree-dominated and with Ratio1 ≤ 0.4 
were classified as grass-dominated. We then used the ratio between bare 
ground and vegetation (Ratio2) to define the vegetation openness. If 
Ratio2 > 0.2, the site was considered densely vegetated (“-closed”); 
otherwise the site was considered to be sparsely vegetated (“-sparse”). 
The sparse site with mean GPP < 1 μmol CO2 m− 2 s− 1 in the period of 
April 2018 to December 2019 was further considered as low- 
productivity, otherwise, the site was considered as high-productivity. 
In total, this resulted in 9 grass and 6 shrub sites with 8 closed and 7 
sparse, as well as 7 low-productivity and 8 high-productivity for a well- 
balanced classification of the available sites (Fig. 1, Table S2). Based on 
the above criteria, we classified EC sites RWS, WKG, SRG, TON, VAR, 
and RLS as grass-closed (gc); SEG, SNF, and WJS as grass-sparse (gs); 
RMS and SRM as shrub-closed (sc); SES, JO2, XSR, and WHS as shrub- 
sparse (ss); ME2, MTB, ME6, XRM, and NR1 as evergreen-needleleaf- 
tree-closed (nc); as well as MPJ as evergreen-needleleaf-tree-sparse 
(ns) (Fig. 1, Table S2). Hereafter, we also included the prefix of the 
vegetation classification abbreviations in the site name to be more 
informative. We note that nc-ME6 and gs-WJS are not typically classified 
as closed and grass-sparse ecosystems, respectively (Law and Waring, 
2011), which could result either from our classification method or 
classification errors in the Rangeland Cover V2.0 product. In addition, 
the Rangeland cover product does not include evergreen vegetation 
cover, which we instead obtained from the 2016 NLCD product (htt 
ps://www.mrlc.gov/data/nlcd-2016-land-cover-conus). 

2.2. MODIS vegetation reflectance-based proxies 

We calculated the NDVI, kNDVI, NIRv, and SAVI from daily 500-m 
resolution nadir BRDF-adjusted reflectance (MCD43A4) data, which 
we refer to reflectance-based proxies in this study. The data quality was 
controlled by removing all pixels that were not classified as either 
“good” (QA = 0) or “marginal” (QA = 1) quality in the QA layer. NDVI is 
defined as the normalized difference between near-infrared (NIR: 
MCD43A4 Band 2) and red (Red: MCD43A4 Band 1) reflectance (Sellers 
et al., 1992): 

NDVI =
(NIR − Red)
(NIR + Red)

(1) 

kNDVI is a nonlinear generalization of NDVI (Camps-Valls et al., 
2021): 

kNDVI = tanh

((
NIR − Red

2σ

)
2

)

(2)  

where σ is a tunable length-scale parameter intended to capture non- 
linear sensitivity of NDVI to vegetation density. Following Camps- 
Valls et al. (2021), we use the generalization σ = 0.5(NIR + red), which 
simplifies Eq. (2) to kNDVI = tanh ((NDVI)2). 

NIRv is designed to better represent the depth-distribution of canopy 
photosynthetic capacity and is calculated as the product of the NDVI and 
NIR bands (Badgley et al., 2017): 

NIRv = (NDVI − 0.08)×NIR (3) 

SAVI accounts for differential red and near-infrared extinction 
through the vegetation canopy and utilizes a transformation technique 
to minimize soil brightness influences (Huete, 1988): 
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SAVI =
(1 + L) × (NIR − Red)

(NIR + Red + L)
(4)  

where L is a soil brightness correction factor. The value of L varies with 
the amount or cover of green vegetation: in very high vegetation re-
gions, L = 0, and in areas with no green vegetation, L = 1. Here, we used 
L = 0.5 (the default value), which works well in most situations 
(Richardson and Everitt, 1992). 

2.3. TROPOMI SIF data 

We obtained daily TROPOMI SIF data between April 2018 and 
December 2019 from ftp://fluo.gps.caltech.edu/data/tropomi/u 
ngridded/. TROPOMI ground pixels are 5.6-km along-track and vary 
from 3.5-14 km across-track (nadir to 60◦ viewing angle). The data were 
pre-processed using a data-driven approach to separate SIF emissions 
from the reflected solar radiation. The data were subsequently restricted 
to 20–200 mW m− 2sr− 1nm− 1 and filtered for pixels with visible infrared 
imaging radiometer suite cloud fractions larger than 0.8 and view zenith 
angles (VZAs) lower than 60 degrees. We converted instantaneous SIF 
observations to integrated daily SIF estimates by multiplying instanta-
neous SIF by the daily correction factor that was made available with the 
data product (Köhler et al., 2018; Doughty et al., 2019). We averaged all 
available SIF retrievals within a 16-km2 grid centered on each EC site 
(Fig. 1). 

2.4. SIF downscaling 

While the spatial resolution of TROPOMI SIF (5.6-km × 3.5-km at 
nadir) is relatively fine compared to retrievals from previous sensors (e. 

g. GOME-2), there remains a considerable spatial mismatch between 
TROPOMI and the average footprint of EC sites (Turner et al., 2020; Chu 
et al., 2021). To enhance the spatial resolution of TROPOMI SIF obser-
vations, Turner et al. (2020) developed a spatial downscaling approach 
that statistically integrated TROPOMI SIF and MODIS NIRv observations 
to generate a 500-m SIF product (SIF_ NIRv). SIF_NIRv was demonstrated 
to be an effective GPP proxy capable of accurately detecting interannual 
GPP variability across the conterminous US (Turner et al., 2020, 2021). 
We therefore also combined the SIF and NIRv signals into a downscaled 
SIF product at 500 m resolution that we refer as SIF_NIRv (Turner et al., 
2020): 

(SIF NIRv)i,j = SIF ×
(
(NIRv)i,j ÷ NIRv

)
(5)  

where i and j indicate the row and column number of each pixel in the 
16-km2 grid, (SIF_ NIRv)i,j and (NIRv)i,j are SIF_NIRv and NIRv for each 
MODIS cell, and SIF and NIRv are means of (SIF_NIRv)i,j and (NIRv)i,j 
within the 16 km2 footprint. For each EC tower, (SIF_NIRv)i,j was 
calculated for each MODIS cell within the 16-km2 grid, then the mean 
SIF_NIRv was calculated as the average (SIF_NIRv)i,j within a 1.5-km2 

area centered on the flux tower, in order to most accurately match the 
tower flux footprint (Fig. S1; Chu et al., 2021). 

2.5. Comparison of satellite-based proxies with eddy covariance GPP 

We calculated the daily averages of NDVI, kNDVI, NIRv, SAVI and 
SIF_NIRv in a 1.5-km2 area centered on each EC site, and TROPOMI SIF 
across the corresponding 16-km2 grid. Within the larger grid, we only 
retained TROPOMI SIF retrievals with the same vegetation cover as the 
target EC site. Averages of all vegetation covers were calculated in the 

Fig. 2. A comparison of mean EC GPP and (a) mean NDVI (1.5-km2), (b) mean kNDVI (1.5-km2), (c) mean NIRv (1.5-km2), (d) mean SAVI (1.5-km2), (e) mean SIF 
(16-km2), and (f) mean SIF downscaled by NIRv (SIF_NIRv; 1.5-km2) over the study period from April 2018 to December 2019 across shrub-dominated, grass- 
dominated, and evergreen-needleleaf- tree-dominated sites. 
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1.5-km2 and 16-km2 grid using 30-m rangeland cover v2.0 data (http 
s://rangelands.app/). 

For the across-site analyses, we used daily GPP, NDVI, kNDVI, NIRv, 
SAVI, SIF, and SIF_NIRv at each site over the 21-month (full record) 
study period from April 2018 to December 2019 as inputs into vegeta-
tion class-specific linear regression models. To investigate seasonal dy-
namics, we calculated approximately monthly (±14-days moving 
window) mean time series as inputs to EC site-specific linear regression 
models. To better evaluate proxy performance at EC sites, across which 
all proxies were relatively well correlated with seasonal GPP dynamics 
(R2 > 0.4), we further analyzed the seasonal bias in the proxy: GPP 
relationship. We focused six grass-dominant sites plus sc-SRM with 
mixed grass and woody covers (grass >28%, Ratio 1 < 50%, Table S2), 
we reported the seasonal bias for each proxy as the average of residuals 
from each linear fit during pre- and post-peak periods that were defined 
by the timing of peak GPP during the major growing season in both 2018 
and 2019. Note sc-SRM is here defined as shrub-closed (similar to other 
sources) but has nearly identical grass and woody covers (~28% each), 
which justifies its inclusion in this analysis. We then plotted the absolute 
values of the seasonal biases for two categories of woody vegetation 
(shrub+tree) fraction ((0, 30%), (30%,50%)) to understand the influ-
ence of woody cover on seasonal biases across grass-dominant sites. We 
additionally calculated these seasonal biases at weekly (±4-days moving 
window) and biweekly (±7-days moving window) scales to assess their 
sensitivity to temporal scale. We excluded shrub- and tree-dominated 
sites from this hysteresis analysis since only two sites from each cate-
gory satisfied criteria for these analyses. 

3. Results 

3.1. Across-site spatial evaluation of dryland GPP proxies 

All proxies captured the across-site spatial variability of GPP, with R2 

values ranging from 0.69 for kNDVI to 0.79 for NIRv (Fig. 2). NDVI and 
kNDVI (Fig. 2a, b), NIRv and SAVI (Fig. 2c, d), SIF and NIRv-downscaled 
SIF (SIF_NIRv) (Fig. 2e, f) performed strikingly similarly in their ability 
to capture GPP across ecosystem types. Notably, compared to the four 
spectral reflectance-based indices, the SIF:GPP and SIF_NIRv:GPP rela-
tionship appeared to vary as a function of ecosystem type. For example, 
for SIF:GPP, the slope of the relationship across evergreen-needleleaf- 
tree-dominant sites (32.0 μmol CO2 m− 2 s− 1/mW m− 2 nm− 1 sr− 1) was 
more than double the slope of the relationship across grass-dominated 
sites (13.2 μmol CO2 m− 2 s− 1/mW m− 2 nm− 1 sr− 1) (Fig. 2e, f). 

3.2. Within-site seasonal evaluation of dryland GPP proxies 

3.2.1. Reflectance-based proxies: NDVI, kNDVI, NIRv, and SAVI 
The monthly NDVI:GPP relationship across all sites (mean R2 = 0.41) 

was the lowest of all the reflectance-based indices (Fig. 3a). Specifically, 
NDVI had the lowest average R2 in grass-dominated (mean R2 = 0.60), 
shrub-dominated (mean R2 = 0.31), and evergreen-needleleaf-tree- 
dominated (mean R2 = 0.22) sites. The correlation between NDVI and 
GPP was insensitive to temporal aggregation at weekly, biweekly, and 
monthly time scales (Figs. 3a, S2a, S2b). The monthly kNDVI:GPP 
relationship across all sites (mean R2 = 0.43) was strikingly similar to 
the NDVI:GPP relationship (Fig. 3b), though R2 at grass- and shrub- 

Fig. 3. The coefficient of determination (R2) for 21 dryland EC sites derived from monthly GPP and monthly satellite proxies plotted against the mean GPP measured 
at the site over the full study period. Comparison of EC GPP and (a) NDVI (1.5-km2), (b) kNDVI (1.5-km2), (c) NIRv (1.5-km2), (d) SAVI (1.5-km2), (e) SIF (16-km2) 
and (f) SIF_ NIRv (1.5-km2) are colour coded by grass-sparse, grass-closed, shrub-sparse, shrub-closed, evergreen-needleleaf-tree-sparse, and evergreen-needleleaf- 
tree-dominated sites. The dashed lines denote the means of the R2 values of all sites. The solid lines denote the mean R2 when excluding all evergreen- 
needleleaf-tree sites for NIRv and SAVI, and all sparse sites for SIF and SIF_NIRv. 
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Fig. 4. The relationship between EC GPP and satellite NDVI(a), kNDVI(b), NIRv(c), SAVI(d), SIF(e), and SIF_NIRv(f) for a representative closed grassland site (gc- 
WKG; 23% fractional woody cover). Green and brown circles represent the pre-peak and post-peak periods, respectively. Seasonal biases were calculated as the mean 
of the residuals from each linear fit during pre-peak and post-peak periods as reported in the legend. Gc-WKG was characterized by bi-modal growing seasons during 
both 2018 and 2019 and pre-peak and post-peak bias is reported for both periods; light green and light brown dots represent the first growing season and dark green 
and orange dots represent the second growing season. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 5. The relationship between EC GPP and satellite NDVI(a), kNDVI(b), NIRv(c), SAVI(d), SIF(e), and SIF_NIRv(f) for a representative closed shrubland site (sc- 
SRM; 50% fractional woody cover). Green and brown circles represent the pre-peak and post-peak periods, respectively. Seasonal biases were calculated as the mean 
of the residuals from each linear fit during pre-peak and post-peak periods as reported in the legend. Sc-SRM was characterized by bi-modal growing seasons during 
both 2018 and 2019 and pre-peak and post-peak bias is reported for both periods; light green and light brown dots represent the first growing season and dark green 
and orange dots represent the second growing season. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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dominated sites was slightly higher for kNDVI (mean R2 = 0.64 and 
0.37, respectively) relative to NDVI (mean R2 = 0.60 and 0.31, 
respectively). 

The monthly NIRv:GPP relationship across all sites (mean R2 = 0.57) 
was improved across all vegetation classes relative to NDVI and kNDVI 
(Fig. 3c). Notably, the NIRv:GPP relationship was relatively low across 
the evergreen-needleleaf-tree- and evergreen-shrub-dominated sites (ns- 
MPJ, nc-VCP, nc-ME6, nc-MTB, nc-ME2, and ss-Jo2), with R2 ranging 
from 0.02 to 0.35 (Fig. 3c). Excluding evergreen-dominated sites, the 
NIRv:GPP relationship increased significantly (mean R2 = 0.71). NIRv 
performed best as an indicator of monthly GPP in grass-closed and 
shrub-closed sites (mean R2 = 0.79). The correlation between NIRv and 
GPP was insensitive to temporal aggregation at weekly, biweekly, and 
monthly time scales (Fig. 3c, S2c, S2d). The monthly SAVI:GPP rela-
tionship across all sites (mean R2 = 0.57) was strikingly similar to the 
NIRv:GPP relationship (Fig. 3d). 

Across seven grass-closed sites, the relationship between reflectance- 
based proxies (i.e., NDVI, kNDVI, NIRv, and SAVI) and GPP was char-
acterized by significant seasonal hysteresis, which we defined as the 
averaged bias in the relationships during the pre- and post-peak periods 
(Table S3). For example, pre-peak biases were − 0.50 and − 1.18 umol 
CO2 m− 2 s− 1 and post-peak biases were 0.36, and 0.75 umol CO2 m− 2 s− 1 

in the monthly NDVI:GPP relationship at gc-WKG (Fig. 4) and sc-SRM 
(Fig. 5), respectively. These seasonal hysteresis effects were signifi-
cantly larger at sites with 30–50% fractional woody plant cover (e.g., sc- 
SRM) than at sites with 0–30% fractional woody plant cover (e.g., gs- 
WKG) (Figs. 4-6). Across all sites, the seasonal hysteresis of the NDVI: 
GPP relationship (mean bias = 0.27 and 0.97 umol CO2 m− 2 s− 1 for 
0–30% and 30%–50% woody cover, respectively) was again similar to 
the kNDVI:GPP relationship (mean bias = 0.24 and 0.81 umol CO2 m− 2 

s− 1 for 0–30% and 30%–50% woody cover, respectively) (Fig. 6). 
Notably, the seasonal NIRv:GPP and SAVI:GPP hysteresis estimates were 
also strikingly similar and less pronounced than the NDVI:GPP and 
kNDVI:GPP hysteresis estimates(Figs. 4-6). For example, pre-peak biases 
were reduced to − 0.29 and − 0.76 μmol CO2 m− 2 s− 1 and post-peak 
biases were reduced to 0.25 and 0.58 μmol CO2 m− 2 s− 1 in the 
monthly NIRv: GPP relationship at gc-WKG (Fig. 4) and sc-SRM (Fig. 5), 
respectively. The NDVI:GPP, kNDVI:GPP, NIRv:GPP, and SAVI:GPP re-
lationships and their seasonal hysteresis characters were insensitive to 

temporal aggregation at weekly, biweekly, and monthly time scales 
(Figs. 3, 6, S2, S3). 

3.2.2. SIF and SIF_NIRv 
The correlation between monthly SIF and monthly GPP across most 

sites (mean R2 = 0.53) and all vegetation classes was improved relative 
to NDVI (Fig. 3e). Notably, the seasonal relationship between SIF and 
GPP was relatively weak (mean R2 = 0.13) across low-productivity sites 
characterized by average GPP < 1 μmol CO2 m− 2 s− 1 and significant 
bare ground relative to vegetation coverage (Ratio 2 > 0.2), including 
gs-SEG, gs-WJS, ss-WHS, ss-JO2, ss-SES, ss-XSR and ns-MPJ (Fig. 3e, 
Table S2). Also, unlike the four reflectance-based proxies, temporal 
aggregation had a large effect on the strength of the SIF:GPP relation-
ship, with correlation values increasing from weekly to monthly time 
scales (Figs. 3e, S2e, S2f). After excluding sparse sites, the monthly SIF: 
GPP relationship increased (mean R2 = 0.74). The SIF:GPP relationship 
had low seasonal hysteresis, with pre-peak biases of − 0.14 and − 0.20 
and post-peak biases of 0.05 and 0.11 (μmol CO2 m− 2 s− 1) for gs-WKG 
and sc-SRM respectively (Figs. 4-5). Notably, seasonal biases were not 
significantly different between the two classes of woody (tree+shrub) 
fractional cover and these findings were preserved at monthly, 
biweekly, and weekly timescale (Figs. 6, S3). Compared to the SIF:GPP 
relationship, the SIF_NIRv:GPP seasonal R2 values were lower across all 
evergreen-needleleaf-tree sites but slightly higher and with reduced 
seasonal biases at six out of eight non-evergreen, high-productivity sites 
(Figs. 3-6, S3). 

4. Discussion 

4.1. Across-site spatial evaluation of dryland GPP proxies 

All satellite-based proxies captured across-site spatial variability of 
GPP reasonably well across sites classified by dominant functional types 
(Fig. 2). NDVI and kNDVI performed strikingly similarly, as did NIRv and 
SAVI, in their ability to capture GPP across sites. We note, however, that 
we applied the default nonlinear sensitivity factor (σ) and soil brightness 
correction factor (L) for kNDVI and SAVI, respectively. There remains a 
need for future research that explores the sensitivity of these indices to 
their respective correction factors (Zhao et al., 2018; Camps-Valls et al., 
2021). 

We found that the SIF:GPP relationship was relatively sensitive to 
ecosystem type, with improved correlation when ecosystem types were 
separated (Fig. 2). Two potential explanations for the observed 
ecosystem-specific sensitivities of SIF:GPP include: 1) differential SIF 
emission and scattering due to differences in canopy structures 
(Migliavacca et al., 2017; Qiu et al., 2019; Dechant et al., 2020); and 2) 
differential SIF emission per unit CO2 uptake driven by variation in the 
dominant photosynthetic pathways (C3 vs. C4) (He et al., 2020). 
Notable, the C3-grass-dominated sites had relatively lower SIF:GPP 
slopes compared to all other sites, possibly due to higher rates of 
photorespiration in the C3 photosynthetic pathway (Fig. S4; Chu et al., 
2021). However, the C3-evergreen-needleleaf-tree-dominated sites had 
the highest SIF:GPP slopes, which suggests that structure and re- 
absorption of SIF emissions may also play a dominant role in SIF:GPP 
relationship (Fig. S4). Future research is needed to more thoroughly 
understand and separate the physiological and structural factors that 
mediate the SIF:GPP relationship. 

4.2. Within-site seasonal evaluation of dryland GPP proxies 

NIRv and SIF outperformed all other proxies in their ability to track 
seasonal GPP dynamics (Fig. 3), consistent with previous studies focused 
on the western US (Smith et al., 2018; Zuromski et al., 2018), Australian 
drylands (Wang et al., 2019), and African savannas (Mengistu et al., 
2020). At low-productivity sites, e.g., grass-sparse and shrub-sparse sites 
(gs-WJS, gs-SEG, ss-WHS, and ss-XSR,), NIRv consistently outperformed 

Fig. 6. Seasonal biases in the monthly NDVI:GPP, kNDVI:GPP, NIRv:GPP, SAVI: 
GPP, SIF:GPP and SIF_NIRv:GPP relationships across two fractional woody 
(shrub+tree) cover classes (0–30% and 30%–50%). Seasonal biases represent 
the absolute value of averaged residuals of the linear regression fit during pre- 
and post-season (Table S3). Fractional shrub and tree cover is defined according 
to Ratio 1 [(shrub+tree) / total vegetation] (Table S2). “***” denotes signifi-
cant differences between paired distributions based on a standard ANOVA test 
with p < 0.001. “**” denotes significant differences between paired distribu-
tions based on a standard ANOVA test with p < 0.01. The bars represent the 
25th–50th -75th percentile of the data points in each relationship; the black 
lines represent the means of seasonal bias in each relationship. 
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SIF at capturing seasonal GPP variation (Fig. 3, Table S4). NIRv was 
largely successful in isolating the vegetation signal from the confound-
ing effects of soil brightness (Templeton et al., 2014; Badgley et al., 
2019; Baldocchi et al., 2020) as demonstrated by its close correlation 
with SAVI (Fig. 3). SIF performed relatively poorly at capturing seasonal 
GPP dynamics at low-productivity sites, likely due to the low signal-to- 
noise ratio of SIF retrievals (Guanter et al., 2015; Köhler et al., 2021). In 
other words, at low productivity sites, the true SIF signal is likely too 
weak to overcome the inherent noise associated with the SIF retrieval 
(Köhler et al., 2021), resulting in very low correlation with seasonal GPP 
dynamics. We also found evidence of low SIF signal-to-noise ratios 
during non-growing season periods at high-productivity sites (gc-SRG, 
gc-VAR, gc-TON, gc-RWS, and sc-RMS), resulting in large apparent pre- 
and post-peak biases (Fig. S5). Further sensitivity analysis in which the 
temporal resolution was increased from monthly to weekly revealed that 
SIF:GPP R2 values were generally reduced (Figs. 3e, S2e, S2f) and SIF: 
GPP seasonal biases were general increased relative to the reflectance- 
based proxies (Figs. 6, S3). This relatively high sensitivity to temporal 
scale suggests that satellite SIF observations are more susceptible to 
noise at these higher frequencies than reflectance-based proxies. Other 
factors including SIF signal re-absorption and sun-sensor geometry 
could also drive noise in the SIF:GPP relationship and should be the 
focus of future research efforts (Romero et al., 2018; Hao et al., 2020; 
Hao et al., 2021; Chu et al., 2021). 

At closed evergreen-needleleaf-tree-dominated sites, SIF captured 
more seasonal GPP variability (R2 = 0.70) than NIRv (R2 = 0.42) (Fig. 3, 
Table S4). This is consistent with previous research finding that SIF 
captures more than just seasonal changes in vegetation greenness and 
potentially contains more information related to physiological function 
(e.g., photosynthetic rate, stomatal regulation, photochemical quench-
ing, etc.) (Joiner et al., 2014; Walther et al., 2016; Magney et al., 2019). 
These relatively high correlations persist despite the coarser spatial 
resolution of TROPOMI SIF observations, which is an order of magnitude 
larger than typical EC tower footprints (Chu et al., 2021). While, we 
minimized the impact of this spatial mismatch by filtering TROPOMI SIF 
observations to include only the vegetation cover types associated with a 
given EC tower, it is likely that this simple filtering was inadequate in 
some cases, especially for sites with relatively high heterogeneity 
around the EC tower site. Downscaling SIF by NIRv observations was 
attempted to better account for this spatial mismatch, but instead 
seemed to transfer the existing limitations of NIRv for tracking GPP 
seasonal variability (Fig. 3), and thus SIF alone outperformed SIF_NIRv 
at evergreen-needleleaf-tree sites (Fig. 3, Table S4). More accurate 
monitoring of heterogeneous dryland regions will require higher reso-
lution SIF observations that better isolate the signals of mixed vegetation 
functional types (Smith et al., 2019). NIRv did perform relatively well 
and similar to SIF at two neighboring evergreen forest sites: Niwot Ridge 
Forest and Rocky Mountain National Park (nc-NR1 and nc-XRM, Fig. 3). 
This finding is potentially explained by previous work demonstrating 
that seasonal changes in canopy colour, which can be tracked with 
reflectance-based proxies, correlate with seasonal GPP for these eco-
systems (Wu et al., 2014; Seyednasrollah et al., 2020). 

SIF downscaled by NIRv (SIF_NIRv) slightly improved seasonal GPP 
estimates and reduced seasonal bias relative to SIF alone at most grass- 
closed and shrub-closed sites (Figs. 3, 6, Tables S3, S4). At these sites, the 
higher spatial resolution of NIRv observations likely helped to reduce 
noise inherent in the SIF signal and associated with footprint mismatch 
(Turner et al., 2020). However, at low productivity sites (mean GPP <
~1 μmol CO2 m− 2 s− 1) with significant bare ground cover, the SIF signal 
was too weak to overcome random noise in the retrieval, resulting in the 
NIRv observations outperforming SIF_NIRv (Fig. 3, Table S4). This 
finding is consistent with recent work showing that SIF_NIRv explained 
less than 10% of GPP variability at shrub and savanna EC tower sites 
(Chu et al., 2021). Here, by incorporating fractional land cover data 
within a 1.5-km2 and 16-km2 grid at each EC site, we provide new ev-
idence that the signal-to-noise of the SIF retrieval is sensitive to 

fractional bare ground cover when the surface is brighter than vegeta-
tion (Guanter et al., 2015), which is a common issue across drylands 
(Huete, 1988; Gholami Baghi and Oldeland, 2019). Other methods, such 
as machine learning (Gentine and Alemohammad, 2018) or a semi- 
empirical downscaling based on light use efficiency (Duveiller et al., 
2020), should be explored in the future to build upon the respective 
strengths of NIRv and SIF while limiting their weaknesses. 

4.3. Reflectance-based GPP proxies are prone to seasonal hysteresis 

While NIRv and SIF accurately captured seasonal GPP across grass- 
closed sites with mixed grass and woody cover, we found significant 
patterns of seasonal hysteresis in the correlations between GPP and 
reflectance-based vegetation proxies (NDVI, kNDVI, NIRv, and SAVI) 
from weekly to monthly scale (Figs. 4-6, S3, Table S3). These patterns 
differed depending on the proportion of evergreen shrubs and trees in 
the tower footprint (Figs. 6, S3), suggesting that reflectance-based 
proxies are seasonally decoupled from GPP for these vegetation types. 
In other words, evergreen vegetation maintained the appearance of high 
photosynthetic capacity (i.e., remains green) even during periods of low 
GPP (Smith et al., 2018; Yan et al., 2019; Knowles et al., 2020). Thus, it 
is important to account for spatially heterogeneous mixtures of these 
functional types when using reflectance-based proxies as GPP proxies or 
inputs of GPP models. SIF was much less impacted by this type of sea-
sonal bias and thus represents an improved proxy for seasonal variability 
of GPP in many dryland ecosystems, especially at the end of the growing 
season (Figs. 6, S3; Wang et al., 2020b). 

Seasonal hysteresis in the relationships between reflectance-based 
proxies and GPP could also be impacted by changing soil brightness 
during pre- and post- peak periods (Gitelson et al., 2014; Flanagan et al., 
2015; Nestola et al., 2016; Peng et al., 2017). For example, at low pro-
ductivity sites like gs-SEG and gs-WJS with more than 30% bare ground 
coverage (Fig. S6, Table S3–1), the bare ground fraction likely changes 
throughout the growing season as bare ground fills in with annual cover 
species and this could also contribute to seasonal hysteresis effects. 
However, across closed canopy sites with high productivity and less than 
20% bare ground coverage, we find evidence that seasonal hysteresis 
with GPP is driven by differences in the herbaceous and woody vege-
tation fractions (Figs. 6, S3). This idea is supported by our findings at gc- 
WKG and sc-SRM sites with potentially two growing seasons, where the 
seasonal hysteresis with GPP mostly occurs during the second (domi-
nant) growing season when bare ground coverage is minimized (Figs. 4- 
5). Similarly, changes in nitrogen content, chlorophyll content, and 
vegetation structure between the pre- and post-peak periods might also 
contribute to seasonal hysteresis (Gitelson et al., 2014; Flanagan et al., 
2015; Nestola et al., 2016; Peng et al., 2017). Notably, the NIRv:GPP 
relationship showed less seasonal hysteresis compared to NDVI:GPP 
likely due to its reduced sensitivity to background soil brightness 
(Huete, 1988; Badgley et al., 2017), and increased sensitivity to 
ecosystem structure (Table S3; Peng et al., 2017). 

Seasonal hysteresis between reflectance-based proxies and GPP also 
differed across climate zones. At the Mediterranean California sites (gc- 
TON and gs-SNF), reflectance-based vegetation proxies (NDVI, kNDVI, 
NIRv, and SAVI) overestimated GPP prior to the annual peak but 
underestimated it thereafter (Table S3–1). However, at the North 
American Monsoon-affected sites (the summer rainfall-dominated sites 
of gs-WJS, gs-SES, gc-WKG, gc-SRG, and sc-SRM), the hysteresis pattern 
between reflectance-based vegetation proxies and GPP was reversed 
(Table S3–1). At the Mediterranean-climate sites in California, the un-
derstory grasses distinctly green up during the cool, wet season from 
October to April, but energy limits GPP during the winter, resulting in 
greenness increasing ahead of GPP. In late spring, the shallow soil dries, 
understory grasses brown, and greenness declines, but the overstory 
oaks thrive on deeper soil moisture such that GPP stays elevated (Bar-
tolome, 1979; Xu and Baldocchi, 2003; Ma et al., 2007; Liu et al., 2017). 
In contrast, at Monsoon-affected sites, both grasses and shrubs green up 
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and photosynthesize during spring using stored winter moisture. 
Following the second, dominant growing season driven by summer 
rainfall, overstory shrubs and trees can remain green for weeks to 
months after soil moisture is depleted and GPP falls (Scott et al., 2009; 
Barron-Gafford et al., 2017; Yan et al., 2019). 

4.4. Complementary application of reflectance-based proxies and SIF 
observations across dryland ecosystems 

The reflectance-based proxies considered here estimated seasonal 
GPP dynamics relatively well in homogeneous and non-evergreen areas 
but poorly in heterogeneous and/or evergreen regions. On the contrary, 
SIF performed well in high-productivity regions and poorly in low- 
productivity regions. These differences in skill are often complemen-
tary and can be potentially leveraged to more accurately characterize 
GPP dynamics across much of the western US. Based on the current 
analysis, we estimate that 25% of the semi-arid western US land area 
corresponds to heterogeneous or evergreen regions (Fig. 7a), which will 
induce bias when using reflectance-based proxies to estimate seasonal 
GPP. This area specifically includes 13% evergreen-dominated regions, 
where reflectance-based proxies failed to capture seasonal GPP dy-
namics; 8% grass-closed regions with more than 30% woody cover, 
where reflectance-based proxies had seasonally hysteretic relationships 
to GPP; and 4% sparse shrub regions, where NIRv only captured around 
50% of the variance in seasonal GPP dynamics (Fig. 7a). In contrast, 
TROPOMI SIF failed to accurately estimate seasonal GPP across low 
productivity areas that account for 39% of the semi-arid western US 
(Fig. 7b). These results underscore the importance of functional het-
erogeneity in dryland ecosystems and demonstrate that generalizing 
across regions using a single vegetation proxy, whether with a process- 
based or empirical model, will likely result in inaccurate and/or biased 
GPP estimates (Smith et al., 2019). Taken together, our findings indicate 
that different vegetation proxies are better suited for different dryland 
ecosystem types, and suggest that data integration approaches, partic-
ularly those focused on integrating SIF and NIRv observations, are crit-
ical to improved performance of satellite-based GPP models across 
drylands from the region to the globe. 

5. Conclusions 

Accurate detection of seasonal to interannual variability of GPP in 
drylands is complicated in part by the highly heterogeneous mixtures of 
bare ground, grass, shrubs, and trees characteristic of dryland ecosys-
tems. Here, we evaluated the skill of NDVI, kNDVI, NIRv, SAVI, SIF, and 
SIF_NIRv to predict GPP dynamics as measured by 21 eddy covariance 
tower sites across six major dryland classes: grass-sparse, grass-closed, 
shrub-sparse, shrub-closed, evergreen-needleleaf-tree-sparse, and 
evergreen-needleleaf-tree-closed of the western US. NIRv and SIF were 
found to perform best in capturing both spatial patterns and seasonal 
dynamics of GPP, and further captured complementary aspects of sea-
sonal GPP dynamics: NIRv was the best GPP proxy across non-evergreen 
vegetation-sparse sites, while SIF was the best GPP proxy across ever-
green and closed-canopy sites. We also found significant seasonal bias 
and hysteresis in the relationships between the reflectance-based proxies 
considered here and GPP as a function of increasing fractional shrub and 
tree coverage across grass-dominated sites. Based on our findings, NIRv 
likely has significant limitations for approximating GPP across 25% of 
the western US (high heterogeneity and/or evergreen vegetation), while 
SIF has significant limitations for approximating GPP across 39% of the 
western US (low productivity sites with a significant portion of bare 
ground). Our research indicates that use of a single proxy or method to 
characterize vegetation dynamics across dryland areas will likely result 
in biased estimates of GPP in at least one part of the growing season. We 
suggest careful consideration of vegetation heterogeneity when inte-
grating different proxies or methods for improved representation of 
vegetation dynamics across dryland regions. 
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